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Chapter 1

Introduction

François de la Rouchefoucauld observed that “the only thing constant in life is change.” [?]
Indeed, change is a property of all biological systems. Since differential equations are a means
to mathematically describe change, they are often used to study biological phenomena.

Hodgkin and Huxley’s work [?] with the squid giant axon was the first major biophysically-
based model of a neuron’s action potential. In their model, current flows through sodium
and potassium channels which open or close at rates depending on the membrane potential.
Other channel types and even synapses can be modeled similarly. These types of models
have been used to represent everything from single cells to thousands of neurons.

A typical biological experiment consists of a given system (an animal, region of the brain,
etc. . . ) that is altered in some way (e.g. presentation of a stimuli or administration of a
drug) and then observed to see how it responds. The system might then be altered and
observed again. Analogously, we can mathematically simulate an experiment by defining
a system of equations and repetitively altering parameters and integrating with respect to
time.

Snnet is a python [?] library for the specification and simulation of neural networks designed
to facilitate these sort of simulations. It is especially designed to simplify working with
parameter sweeps, random networks, heterogeneities, and noise.

No knowledge of programming or python is assumed or required to use snnet1. A typical
snnet simulation requires a line to load the snnet library and (optionally) a line to indicate
the definition of a simulation protocol. The remainder of the file is devoted to defining the
simulation and does not require any python keywords.

Simulation results can be analyzed from within python using the snnet library and standard

1See www.oreillynet.com/pub/a/network/2000/06/02/magazine/python_first_language.html for
the case for learning python as a first language.

1

www.oreillynet.com/pub/a/network/2000/06/02/magazine/python_first_language.html
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tools or exported for use with other packages. Python was chosen for snnet in part for
its wide availability of free analysis routines. Other computational neuroscience tools have
made the same choice: Brian [?], pynn [?], NEURON [?], MOOSE [?], and NEST [?] can be
controlled via python as well.



Chapter 2

Installation

Snnet requires python 2.4 - 2.7; the python 3.x series is not backward compatible. In the
future, snnet will be extended to work with both the 2.x and 3.x series.

The recommended and simplest way to use snnet is to include the snnet folder in every
directory with snnet code. This way, as long as you do not modify or replace the folder or
its contents, you always know exactly what version of snnet was used to run a particular set
of simulations, ensuring reproducibility.

An alternative approach is to place the snnet folder inside of the python site-packages

directory or any other directory listed in the PYTHONPATH environment variable. This ap-
proach allows running snnet from every path and avoids having duplicate copies, but does
not allow for the simultaneous use of multiple versions.

2.1 Integrators

Snnet is designed to be extensible to allow the use of, in principle, any implementation
of any integration algorithm. Four integration options are provided in the standard release:
fast xpp integrator, xpp integrator, matlab integrator, and matlab mex integrator.
Each requires one or more programs to be available on the system path, as follows:

2.1.1 fast xpp integrator

This is the recommended integrator for Linux and OSX. It is the fastest, most
capable, and most tested integrator, but it does not support Windows. Needs no non-free

3
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software. Requires:

� xppaut1

� gcc

2.1.2 xpp integrator

Works in Linux, Mac, and Windows. Needs no non-free software. Does not support noise,
delays, or concentrations. Requires:

� xppaut

2.1.3 matlab integrator

Works in Linux, Mac, and Windows. Does not support delays or concentrations. Requires:

� matlab2

2.1.4 matlab mex integrator

Works in Linux, Mac, and Windows. Does not support delays. Requires:

� matlab

� mex

2.2 Optional additional software

While not required for basic use, snnet uses additional packages if installed to provide better
performance or additional features:

1http://www.math.pitt.edu/~bard/xpp/xpp.html
2http://www.mathworks.com/products/matlab

http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.mathworks.com/products/matlab
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� numpy3 – allows frequency analysis, faster calculation of coefficient of variation

� sympy4 – improves algebraic simplification of model equations

� matplotlib5– plotting, raster plots

� gnuplot6– plotting

� ImageMagick7,8 – converting graphics formats.

Though not used by snnet directly, scipy9 is useful for transferring data to and from MAT-
LAB via mat files.

3http://numpy.scipy.org
4http://sympy.org
5http://matplotlib.sourceforge.net
6http://www.gnuplot.info
7http://www.imagemagick.org/
8Required by the snnet interface to gnuplot
9http://www.scipy.org

http://numpy.scipy.org
http://sympy.org
http://matplotlib.sourceforge.net
http://www.gnuplot.info
http://www.imagemagick.org/
http://www.scipy.org
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Chapter 3

Defining the simulation

Conceptually, a biological experiment consists of two distinct parts: the cells, organisms,
etc. . . that are being experimented with, and the protocol that is being used. Likewise,
there are two phases to defining a snnet simulation: specifying the dynamics, and specifying
the protocol (parameter changes, etc. . . ).

3.1 Model equations

The dynamics of the system are typically specified in a snnet file, however they can also be
provided as a string to the control code, see below.

A snnet file describes the dynamics of a cell type, organelle type, or global process. Since
no two cells are identical, snnet allows parameters to be specified as constants or as elements
of some probability distribution.

A snnet file is a simple text file, and can be created or edited with any text editor. The
snnet distribution includes one example, hh.snnet, also reproduced below.

Line order does not matter in a snnet file, with the partial exception that the first differential
equation declared will be assumed to represent a cell’s membrane potential, unless otherwise
declared. For maximum clarity, it is recommended that you always explicitly declare which
variable refers to the membrane potential.

In general, snnet recognizes the order of operations, parentheses, many common functions,
the arithmetic operations +, -, *, /, **, ^, where * denotes multiplication and ** and ^ both
represent exponentiation.

7



8 CHAPTER 3. DEFINING THE SIMULATION

3.1.1 Comments

Good programming practice encourages the use of comments, so we begin here. A comment
is a human-readable description of what the code is trying to accomplish; it should not be a
direct translation of the code. i.e. Avoid comments like “add a and b.”

Any line or portion of a line beginning with a # in snnet or python is treated as a comment
and ignored by the computer. e.g.

# This is a comment. The computer will ignore it.

3.1.2 Differential equations

State variables have an initial value but change over time according to some differential
equation. Specify the initial condition with an assignment to the state variable and indicate
the derivative with a prime.

Example:

To represent the equation for logistic growth of a population P that is 500 at time 0 and has
carrying capacity 1000,

P (0) = 500,

dP

dt
= P (1000− P )

write

P = 500

P' = P * (1000 - P)

3.1.3 Algebraic expressions

It is often convenient to compute intermediate quantities before writing the differential equa-
tions. Snnet does not distinguish between algebraic expressions and parameters. This means
that any expression defined as a constant or probability distribution can later be replaced
with an algebraic expression during the simulation. Thus synaptic conductances can easily
be modified on a per-simulation basis to be modulated by various hormones, etc. . .
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To define an algebraic expression (or parameter), simply state the variable name, an equal
sign, and then the value. Differential equations and other algebraic expressions can refer to
an algebraic expression, regardless of the order they are defined in the file. In particular,
this means that algebraic expressions cannot be redefined in the same file.

For example in the Hodgkin-Huxley equations, the leak current is defined by

I` = g` (v − v`).

In snnet, this becomes

Il = gl * (v - vl)

3.1.4 Functions

Snnet recognizes the following functions of one variable:

exp, sin, cos, tan, atan, acos, asin, log, log10, abs, heav, sinh, cosh, tanh, erf, erfc,
sign

and the following functions of two variables:

max, min, atan2

User-defined functions of any number of variables are also permitted. They may be defined by
specifying the function name, a comma separated list of parameters enclosed in parentheses,
an equal sign, and then an algebraic expression. For example:

add three numbers(a, b, c) = a + b + c

3.1.5 Variable name rules

State and algebraic variables and function names must begin with a letter and can consist
only of letters, numbers, and underscore. Snnet itself is case sensitive, but some integrators
(xpp integrator) are not, so it is best to avoid using state variables that differ only in
capitalization. Algebraic variable names never appear in generated code, so it is safe, but
discouraged, to use names differing only in capitalization with them.
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3.1.6 Numbers and probability distributions

At any point a number might be used in a differential equation or an algebraic expression,
a probability distribution can also be specified. Whenever a cell or organelle is created from
the snnet file, fixed values will be chosen from each distribution for that particular cell.

Uniform and normal distributions are supported.

For a value uniformly between a and b, write [a : b]. For a value from a normal dis-
tribution with mean a and standard deviation b, write a [b]. For a value from a normal
distribution with mean a and standard deviation b percent of the mean, write a [b%]. Note
that a and b are numbers; they are not expressions.

Very large and very small numbers can be input using the standard computer variation of
scientific notation. That is, write 3.14× 10−6 as 3.14e-6.

3.1.7 Current time

The variable t contains the current time, unless it is otherwise set by the snnet file.

3.1.8 Special considerations

Capacitance.

In many models, the membrane capacitance is taken to be 1 µf/cm2. If this is not the case,
you must manually set the variable capacitance to the correct value, otherwise synaptic
connections will not work correctly. This also means that the capacitance variable may
not be used for any other purpose.

Organelles.

Organelles may be affected by the state of the cell that contains them. To refer to the
variable var of the enclosing system, write external var.
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Concentration.

Conservation of mass dictates that if the volume of a cell changes over time, chemical concen-
trations must change as well. If this is the case in your model, declare the variable volume as
either a differential variable or algebraic expression, and explicitly declare the concentrations
by writing concentrations and then a comma separated list of concentrations. volume is
the total volume enclosed by the object, including the volume of any nested organelles.
effective volume is calculated from the total volume of the object and the total volume of
the objects it contains; it is the free volume not contained in any sub-object.

Internally, snnet keeps track of the corresponding mass and divides to get concentration
whenever necessary.

For example, if volume is initially 1, grows according to volume′ = volume (2−volume) and
ip3 and ca represent chemical concentrations within your volume, your snnet file should
contain the lines

volume = 1

volume' = volume * (2 - volume)

concentration ip3, ca

Note that the initial concentrations of ip3 and ca still need to be specified. If ip3 also
changes due to a reactions term reaction, include the line

ip3' = reaction

To specify a chemical flux from a neuron into the extracellular space or from an organelle
into the neuron that contains it, use flux. Fluxes are not included in the derivative line.
They are defined on the equations for the inner object and can only be used with variables
declared as concentrations. For example, to indicate that calcium (ca) fluxes out of an ER
into the cytosol at a rate jip3r - jserca + jleak, include

ca flux jip3r - jserca + jleak

in the snnet file for the ER.

Note that chemical concentration support is new in version 0.1.0, and is one of the least tested
features of snnet. Only use fluxes between compartments, changing volume, and the concen-
tration keyword if you are willing to extensively test your code and provide feedback. In the
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constant volume case, there should be no difference between specifying the concentration

keyword and not specifying it, except that neither xpp integrator nor matlab integrator

currently support concentrations. Since the support for explicit concentrations is new, the
recommended approach is to omit the keyword unless the volume is nonconstant.

3.1.9 Converting models from xppaut

The snnet file specification is very similar to xppaut’s ode file format. Most models can
be converted to snnet simply by removing line prefixes (par, init, !, number, etc. . . ), the
end-of-model marker “done”, and integration options. Integration options can be specified
later as part of the simulation protocol. If any derivatives were specified using the form
dname/dt, these must be changed to name'.

Less common issues include:

� multiple neurons in one file – split into separate files to allow using snnet’s network
tools.

� capacitance – many models assume membrane capacitance is 1; if this is not the case,
set the variable capacitance to the correct value, otherwise the synapses will not work
correctly.

� line continuation – snnet does not support line continuation; remove backslash-newlines.

� case sensitivity – xppaut is not case sensitive, but snnet is. If the ode file refers to
variables inconsistently, load the snnet using the ignore case=True option, see below.

� comments – comments beginning with a quotation mark should be changed to begin
with a # sign.

� arrays – are not supported. That is, there is no support for [j], shift, del shift.

� unsupported keywords – delay1, if, then, else, global, special, solve, bdry,
wiener, table, markov, volterra, options, set, export, besselj, bessely, hom bcs,
sum.

3.1.10 Example: Hodgkin-Huxley equations

The following is the classic model of Hodgkin and Huxley. Note that iapp is defined as a
probability distribution with mean 0 and standard deviation 1, so different cells will have
different values for applied current.

1fast xpp integrator supports synaptic delays, specified at connection time.
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# sodium

gna = 120

vna = 50

# potassium

gk = 36

vk = -77

# leak

gl = .3

vl = -54.4

# applied current

iapp = 0 [1]

# helper functions

am = .1 * (v + 40) / (1 - exp(-(v + 40) / 10))

bm = 4 * exp(-(v + 65) / 18)

ah = .07 * exp(-(v + 65) / 20)

bh = 1 / (1 + exp(-(v + 35) / 10))

an = .01 * (v + 55) / (1 - exp(-(v + 55) / 10))

bn = .125 * exp(-(v + 65) / 80)

# ionic currents

ina = gna * m ^ 3 * h * (v - vna)

ik = gk * n ^ 4 * (v - vk)

il = gl * (v - vl)

# state variable dynamics

v' = -(ina + ik + il) + iapp

m' = am * (1 - m) - bm * m

n' = an * (1 - n) - bn * n

h' = ah * (1 - h) - bh * h

# initial conditions

v = -65

m = .05

n = .317

h = .6



14 CHAPTER 3. DEFINING THE SIMULATION

3.1.11 Example: Fast-Spiking Interneuron (Golomb et al 2007)

This model is from Golomb et al 2007 and illustrates user-defined functions, multiple declara-
tions on one line, alternate exponentiation syntax (**), and proper declaration of capacitance
to allow for non-unity values.

# model from

# Golomb D, Donner K, Shacham L, Shlosberg D, Amita Y, Hansel D (2007).

# Mechanisms of Firing Patterns in Fast - Spiking Cortical Interneurons.

# PLoS Comput Biol 3:e156.

#

# based on the xppaut version at

# http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=97747

# this will be automatically used by synapses

capacitance = 1

# parameters

Iapp = 3.35

gA = 0.39

theta m = -24.0

gNa = 112.5

gK = 225.0

gL = 0.25

sigma m = 11.5

theta h = -58.3, sigma h = -6.7

theta n = -12.4, sigma n = 6.8

theta t h = -60, sigma t h = -12.0

theta tna = -14.6, sigma tna = -8.6

theta tnb = 1.3, sigma tnb = 18.7

theta a = -50, sigma a = 20

theta b = -70, sigma b = -6

tau b = 150, tau a = 2

power n = 2.0

V Na = 50.0, V K = -90.0, V L = -70.0

# auxilary function:

GAMMAF(VV, theta, sigma) = 1.0 / (1.0 + exp(-(VV - theta) / sigma))

# functions:

m inf = GAMMAF(V, theta m, sigma m)

h inf = GAMMAF(V, theta h, sigma h)

n inf = GAMMAF(V, theta n, sigma n)
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a inf = GAMMAF(V, theta a, sigma a)

b inf = GAMMAF(V, theta b, sigma b)

tau h(V) = 0.5 + 14.0 * GAMMAF(V, theta t h, sigma t h)

tau n1(V) = 0.087 + 11.4 * GAMMAF(V, theta tna, sigma tna)

tau n2(V) = 0.087 + 11.4 * GAMMAF(V, theta tnb, sigma tnb)

tau n(V) = tau n1(V) * taun n2(V)

# currents

ina = gNa * m inf ** 3 * h * (V - V Na)

ik = gK * (n ** power n) * (V - V K)

il = gL * (V - V L)

ia = gA * a ** 3 * b * (V - V K)

# odes

V' = (-ina - ik - il - ia + Iapp) / capacitance

h' = (h inf - h) / tau h(V)

n' = (n inf - n) / tau n(V)

a' = (a inf - a) / tau a

b' = (b inf - b) / tau b

# initial conditions

V = -70.038

h = 0.8522

n = 0.000208

a = 0.2686

b = 0.5016

3.2 Simulation protocol

Simulation protocols are specified using python, however in practice there are often only two
lines of pure python syntax.

First we must load the snnet library:

from snnet import *

Then we must indicate that what is to follow is a protocol and not to be run immediately2.

2This is not strictly necessary, but it provides for an automated way of doing multiple runs, parameter
sweeps, and saving the results.



16 CHAPTER 3. DEFINING THE SIMULATION

We do this by declaring a function in python. I usually name my function simulation. The
corresponding declaration reads

def simulation():

Everything that follows that is part of the protocol must be indented by a uniform amount.

3.2.1 Collections of cells

Initial creation

The primary unit in snnet is a collection of cells. A collection is a set; it is impossible for a
cell to belong to a given collection more than once.

Initial collections of cells are by cell types, loaded in by the neurons function. For example,

hcells = neurons('hh.snnet', 30)

creates thirty neurons with dynamics as described in the file hh.snnet. If the snnet file
describes probability distributions for parameters, each neuron will have a specific value
chosen independently from all the others. Instead of specifying a filename, one can also
provide a string containing the model description, in the exact same format as would be
written in a snnet file. If the number of neurons (here 30) is omitted, only one will be
created.

The state variable whose dynamics are described first in the snnet file will be assumed to
represent membrane potential. If snnet does not know which variable contains the membrane
potential, then synapses, raster diagrams, and field potential calculations will not work cor-
rectly. To manually specify the potential variable, pass an argument named potential var

to neurons. For example, to declare the potential variable to be ‘v’, use

hcells = neurons('hh.snnet', 30, potential var='v')

The neurons function supports two additional standard arguments: ignore case=True

causes snnet to treat all variable names in the file as lower case. This option is useful for im-
porting models from descriptions that are not case-sensitive. Passing verify defined=False
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causes snnet to not check that all the variables are defined. Generally a model can only ac-
cess its own variables, those of the environment its contained in (if an organelle), and global
variables, but this option allows a cell to specifically reference another cell’s state variables.

The neurons function also allows overriding the values for algebraic expressions in the snnet
file. There are other ways of doing this, see 3.2.5. As an example, to replace the value of
gna described in hh.snnet with 123, use

hcells = neurons('hh.snnet', 30, gna=123)

Any number of parameters may be overridden simultaneously in this manner. All overrides
specified in this way are themselves overridden by values declared by default value or in
the run function.

Set operations

Collections created via the neurons function automatically represent the same type of cell,
however different models may suggest different organization systems. All such collections
may be formed by taking subsets of existing groups and combining via set operations.

There are two main options for taking subsets of a collection: taking random subsets or
taking specific cells based on index in the collection.

To take a random subset of hcells of size 5, use subset:

new collection = hcells.subset(5)

To extract a specific cell or range of cells based on index, use bracket notation. Note that
snnet follows the python convention of numbering starting at 0. Thus to extract the third
cell (position 2) from hcells, use

result = hcells[2]

Here result is a collection of neurons of size 1.

To extract a range of cells, use slice notation a:b. By python convention, index a is included,
while index b is not. Thus to create a new collection of cells from positions 0 through 14
inclusive of hcells, use
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result = hcells[0:15]

Multiple slices and singleton extractions may be combined in one by separating each with
commas inside the brackets:

result = hcells[2, 3, 6:10, 12:15]

Collections support standard set operations. If a and b are collections of cells, then:

� union: a + b, alternatively a | b

� difference: a - b

� symmetric difference: a ^ b

� intersection: a & b

� complement: ∼a

Collections may also be compared to check for containment or equality: a<b, a<=b, a>b,
a>=b, a==b, a!=b.

The number of objects in the collection a is len(a).

Interactive experimentation. Snnet can run in an interactive python session (initiate
one by typing “python” on the terminal window). This is useful for testing many features,
but it is especially helpful in checking that you understand how snnet does set operation on
collections of neurons. When a collection is displayed, it includes a list of the indices of the
neurons it contains. The following example session shows the interactive creation of a large
collection, then two subsets, and tests of their union and set difference:

>>> from snnet import *

>>> hcells = neurons('hh.snnet', 30)

>>> hcells[1:10]

NeuronGroup([1, 2, 3, 4, 5, 6, 7, 8, 9], sim, name = 1)

>>> a=hcells.subset(5)

>>> b=hcells[28, 19, 12, 14, 7]

>>> a

NeuronGroup([0, 17, 26, 19, 7], sim, name = 2)
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>>> b

NeuronGroup([12, 19, 28, 14, 7], sim, name = 3)

>>> a+b

NeuronGroup([0, 7, 12, 14, 17, 19, 26, 28], sim, name = 4)

>>> a-b

NeuronGroup([0, 17, 26], sim, name = 5)

Names are important

Snnet remembers the names given to all collections prior to the last snnet function call
(typically an advance function). In the above example, we named three collections: hcells,
a, and b. Analysis functions that take a cells argument can take the name of a collection
to study.

3.2.2 Global dynamics

Global dynamics are dynamics that potentially affect the entire system. One typical use is
to model chemical dynamics in the extracellular medium. All of their state variables are
accessible to any other equation in the system.

Load global dynamics with the global dynamics function. Its syntax and options are iden-
tical to the neurons function except that by definition, there can only be one copy, so there
is no option for specifying the quantity. Assign the result of the global dynamics to a
variable to allow modifying its algebraic expressions later.

As in example, if dopamine.snnet defined dopamine dynamics, then one might include the
line:

dopamine = global dynamics('dopamine.snnet')

3.2.3 Synapses

Synaptic transmission is a major form of neuronal communication. Snnet provides built-in
support for ionotropic chemical synapses. At an ionotropic chemical synapse, neurotrans-
mitters are released from a pre-synaptic neuron in response to an action potential, travel
across the synaptic cleft, and activate receptors, triggering current influx (or efflux).
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Connection declaration

To connect all of the pre-synaptic cells pre to all of the post-synaptic cells post using a
synapse of type syn (see below), use

post.connect(pre, synapse=syn)

By default connect will not connect a neuron to itself. If for some reason, self-connections
are desired, pass the option allow self connect=True to the connect method.

To connect each post-synaptic cell to a fixed number (without repetition) of pre-synaptic
cells, specify that number as the n parameter of connect. For example, to connect each
post cell to five pre cells with synapse type syn, use

post.connect(pre, n=5, synapse=syn)

To connect cells using a specified pair-wise probability (a number between 0 and 1, inclusive),
specify the probability as the p parameter of connect. For example, to connect (on average)
30% of the pre-synaptic cells to a given post-synaptic, with the other variables as before,
use

post.connect(pre, p=.3, synapse=syn)

Subset notation may be combined with the connect method. For example, to connect post
cell 0 with pre cells 1, 6, and 10, write

post[0].connect(pre[1, 6, 10], synapse=syn)

Synaptic types

A synaptic type defines how the synaptic current depends on a synaptic gating variable,
defined in the pre-synaptic cell. Snnet provides two types: ion synapse (this is almost
always the correct choice) and applied current. Additional user-defined types may be
made by subclassing snnet.synapse.Synapse.

Current from an ion synapse has the form s gsyn (v − vsyn), where s is the gating variable,
gsyn is the conductance, v is the membrane potential, and vsyn is the reversal potential.
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Excitatory synapses have high values of vsyn; inhibitory synapses have low values. The
variable corresponding to membrane potential is declared in the neurons function or, if not,
is assumed to be the first variable whose derivative is specified in the snnet declaration. The
values for s, gsyn, and vsyn are specified (in order) as mandatory parameters to ion synapse.

For example, to connect all of post to all of pre where the synaptic gating variable was
called s in the declaration of pre, and the conductance and reversal potential were called
gsyn and vsyn in the declaration of post, write

post.connect(pre, synapse=ion synapse('s', 'gsyn', 'vsyn'))

Numeric values may be specified in place of the strings for the parameters. applied current

causes a current of magnitude s gsyn in the post-synaptic cell. Unlike an ion synapse,
applied current does not depend on membrane potential, so there is no vsyn to specify.
In the simplest case, use

post.connect(pre, synapse=applied current('s', 'gsyn'))

It is sometimes useful to allow heterogeneities in the choice of synapses, especially in the
case of delays (below). To do this, pass a list of synapses (denoted by square-brackets and
separated by commas) to the synapse parameter. For example:

post.connect(pre, synapse=[syn1, syn2, syn3])

In this case, each synapse is chosen uniformly at random from the provided list.

Delays

Neurons are not points; it takes time for action potentials to propagate down an axon,
for neurotransmitters to cross the synaptic cleft, and for post-synaptic potentials to reach
the axon hillock. In certain models, these delays critically affect the dynamics. To specify
the delay (either as a number of ms or as a string containing a variable defined on the
pre-synaptic side), simply pass in a value to ion synapse or applied current’s optional
parameter delay. For example, to include a 5 ms transmission delay between the cells pre

and post, write
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post.connect(pre, delay=5)

Of the integrators included with snnet, only fast xpp integrator supports delays. The max-
imum delay must be specified manually by setting the delay option on the integrator. For
example, if the maximum delay is no more than 6 ms, declare

fast xpp integrator.delay = 6

before invoking the run function.

Metabotropic synapses

If the ultimate effect of metabotropic receptor activation is to admit an ionic current, then
metabotropic receptors may be modelled identically to ionotropic receptors.

If, instead, receptor activation is important due to the resulting chemical cascade (for exam-
ple, in some cells activation of mGluR5 results in the production of IP3 which can trigger
a calcium wave), then the input must be manually modified on a per-cell basis. Specify
verify defined=False in the call to neurons to allow the created neurons to reference
variables in other neurons.

3.2.4 Noise

In neural modelling, there are at least two major sources of noise: the stochastic opening
and closing of ion channels, and input from other cells in the nervous system that are not
explicitly modelled. The first source may often be safely neglected due to the large number
of ion channels in a cell, and is not presently directly supported by snnet.

Declaration

Synaptic input from cells outside the model by creating a collection of noise sources using
either square wave noise, exponentially decaying noise, or a user-defined subclass of
snnet.Noise. The two included options differ only in the shape of the synaptic gating
dynamics and the specification of the parameters for defining the shape. The parameters for
each are, in order, the number of sources, the firing rate, and shape parameters. They return
a collection of noise sources which may be freely combined with collections of neurons.
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The integrator xpp integrator does not support noise, but all of the other included inte-
grators, including fast xpp integrator do.

A note of caution: snnet does not force integrators to notice noise events. That is, if the time
step is too large, it is possible for a noise event to be ignored. To avoid this issue, ensure
the maximum step size is at least several times smaller than the duration of a noise event.

square wave noise. This function returns noise sources where the synaptic gating vari-
able fires a series of square wave pulses. The shape is defined using two parameters: duration
and max value. In this case, the gating variable would be 0 until a pulse event, instantly
rise to max value, remain there until duration after the onset, then immediately return to
zero.

noise source = square wave noise(10, firing rate=5, duration=2, max value=1)

creates a collection of ten noise sources, each generating square wave pulses at irregular
intervals according to a Poisson process with an average firing rate of 5 Hz, with each pulse
maintaining a value of 1 for 2 ms.

All of the parameters are optional: by default only 1 noise source will be created, which will
fire according to a Poisson process at 5 Hz with a maximum value of 1 maintained for 1 ms.

Firing rate. If firing rate is set to a number, snnet has the noise sources fire irregularly
according to a Poisson process at the specified frequency. To specify periodic firing instead,
write the desired frequency inside a call to the periodic function. For example, to create
one square wave noise source that fires periodically at 5 Hz, but otherwise uses the default
options, write

periodic source = square wave noise(frequency=periodic(5))

Arbitrary, but pre-determined firing rules (that is, rules that do not depend on the current
state of the simulation) may be specified by setting frequency to a function that takes a
snnet.Simulation object and returns the number of milliseconds to wait between spikes.

exponentially decaying noise. This noise source simulates synaptic gating variables
that immediately rise to max value, maintain that level for delay ms, then decay expo-
nentially with time constant decay rate. The default for max value is 1, for delay is 0,
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and for decay rate is 2. Firing rate options are identical to those for square wave noise.
As an example:

enoise = exponentially decaying noise(5, firing rate=10, delay=1)

Connecting

Collections of noise sources may be connected to neurons identically to collections of neurons,
with the exception that the synaptic gating variable need not be specified. If a gating variable
is specified, it is ignored, allowing the same code to work with both neurons and noise sources.
This flexibility is useful for testing the response of a small portion of a network to artificial
input. For example, to connect ecells to the noise sources enoise with probability .3,
reversal potential 0 mV, and connection strength gsyn, write

ecells.connect(enoise, p=.3, synapse=ion synapse('gsyn', 0))

Delays are not supported for noise sources.

3.2.5 Parameters and other algebraic expressions

Most models for cells, organelles, and global dynamics will be defined in part using param-
eters and other algebraic expressions.

Default values

While values for these expressions are typically provided in the model description snnet file,
some protocols will wish to provide their own values, either to override a numeric value or
to replace a constant with an expression.

We have already seen that the neurons and global dynamics functions allow parameter
overrides on a per-file-import basis; default value works on all subsequent model declara-
tions and takes precedence over the previous method. To use default value, simply call it
with a variable name and a value. For example, to make gk default to 123, write

default value('gk', 123)
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As a second example, even if gna was initially defined as a constant, we can redefine it as
an expression. Here we make it a linear function of da:

default value('gna', 'da * gna m + gna b')

No assumption is made about whether or not any models referring to gna define gna a or
gna b prior to this function call. All that is required is that all of the variables are defined
prior to any integration attempts.

Specifying parameters when calling the run function overrides any values specified by default value.
Furthermore, values manually set after creation have the highest precedence.

The value function returns the value of any override that works on a simulation-wide level.
The values it returns were either specified by the run function call or in a default value

statement. For example, to print the value of the override gk, write:

print value('gk')

If no such override is defined, value returns None. As an alternative, value also accepts a
second argument, which is returned instead if no override is defined.

Reading values

It is sometimes useful to read the current values of parameters assigned to a particular
collection of cells. This is useful for restoring parameters to their previous values and for
making relative changes in the parameter values (e.g. increase the applied current by a fixed
amount to all cells).

If hcells is a collection of cells with parameter iapp, then to save a copy of the values used
for iapp in the variable iapp vals, use dot notation:

iapp vals = hcells.iapp

The dot notation returns a ParameterList – which behaves much like a regular python list
except it defines standard arithmetic vector operations – where the entries are ordered in
the same order as the collection.

Note that if the values were originally specified as a probability distribution, this will return
the values chosen from that distribution.
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Setting values

Dot notation can also be used to assign values to parameters. For example, to set hcells.iapp
to 2, write

hcells.iapp = 2

If the variable name did not previously exist, then this assignment creates it. As with
default value, the right-hand side may be a constant, distribution, or algebraic expression.

To make relative changes to parameter values, read the parameters into a ParameterList,
apply arithmetic manipulations, and store the result. This can be done in one line. For
example, to increase hcells.iapp by 2, write

hcells.iapp = hcells.iapp + 2

More concisely, one may write

hcells.iapp += 2

Globally overridden variables may be referenced by name in these assignments. To increase
hcells.iapp by the amount in stimulus, use

hcells.iapp = hcells.iapp + 'stimulus'

A note of caution: the value assigned is the global override value, regardless of whether or
not an expression by that name is defined within hcells.

Global override values may also be suffixed by a standard deviation as in a snnet declaration.
For example,

hcells.foo = 'bar [10%]'

sets the expression foo within the hcells to a value chosen from a normal distribution with
mean bar and standard deviation ten percent of the mean.
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The use of global overrides is preferable to constants or python variables because it allows
the amount to be varied during a parameter sweep.

Note that if a parameter was originally declared to be 0 [1], setting it to 2, and the setting
it back to 0 [1] does not return it to its initial state. Instead, a new value from the same
probability distribution is selected. This is rarely the desired behavior. To return a variable
to its initial value, read it as described above, save that value, and then restore by setting
the variable equal to the saved value.

3.2.6 Organelles

Add an organelle or other compartment to a pre-existing collection of neurons or compart-
ments using the collection’s add compartment method. The options are identical to the
neurons function, and the return value is a collection of compartments which can be ma-
nipulated just like a collection of neurons. For example, if er.snnet contains a model of
the endoplasmic reticulum (ER), we can include it in all the cells belonging to the collection
hcells via

ers = hcells.add compartment('er.snnet')

If mcells is a group of cells that contain ERs that were defined in 'er.snnet', then

mcells['er.snnet']

returns a collection of the ERs belonging to the collection mcells.

Internally, organelles and neurons are numbered consecutively in the order of creation. If a
simulation created three neurons – 0, 1, and 2 – and then created an organelle, that organelle
would be assigned index 3.

There are two main ways an organelle may communicate with its containing cell:

First, it may read the container’s state variables. It does this by prepending the variable
names with ‘external ’. As an example, if an organelle is contained in a cell with membrane
potential v, then its dynamics can refer to external v.

Second, the organelle may support a chemical flux across its membrane. In the snnet declara-
tion, this can be declared using the flux keyword, but fluxes may also be added dynamically
at run time. To do so, use the collection’s flux method. This method requires specifying
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the internal variable, the flux rate, and optionally the name of the external variable. For
example, to make the variable cai flux into the containing neuron’s variable ca for the
compartments ers at a rate jflux write

ers.flux('cai', 'jflux', external var='ca')

See 3.4 for an example using organelles.

3.2.7 Integration

Initial time

By default, simulations are assumed to start at time 0, but this value can be adjusted via
set initial time. For example, to start integration at time 10, use:

set initial time(10)

Only positive times are fully supported. At present, noise sources always fire their first event
at a negative time near 0.

Advancing the simulation

Two functions are provided to advance the simulation: advance and run to. advance

integrates for a specified duration from the current time. For example, if the current time is
10 ms,

advance(20)

runs the integrator until time 30 = 10 + 20 ms. By contrast,

run to(20)

stops the integrator at time 20 ms if it is called at any time prior to 20 ms. Attempting to
call run to with a time before the current time is an error and will raise an exception.
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A caution on parameters: variable substitutions are only made at each integration. This
means that if a is defined in terms of b, but the definition for b is changed before integration,
then a will use the new definition for b.

Labeling time points

Assign names to key time points for use doing later analysis via name time. This is especially
useful for comparing behavior between simulations where the same event is signaled at
different numeric times. For example, if your protocol presents a stimulus at the current
time point, you might want to include:

name time('apply stimulus')

3.2.8 Forking

Often one objective of an experiment is to compare the results from two initially identical but
later different protocols. For example, a test of a drug may seek to compare the performance
of control cells to that of cells exposed to the drug. In working memory or decision tasks,
one might want to compare a network’s response to different stimuli.

In this case, there is no need to run the identical portion of the simulation more than
once; when the protocols diverge, simply declare a fork(), then continue describing the first
procedure to completion. Save or otherwise process the results manually, then return to the
previous simulation state via end fork(). Forks may be nested or used repeatedly to allow
for multiple branches of the simulation.

hcell = neurons('hh.snnet')

# portion common to both branches

advance(50)

# first fork, no applied current

fork()

advance(100)

save simulation('fork1 ' + default filename())

end fork()

# second fork, applied current

# no need for a fork here, since never returning to this point again
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hcell.iapp = hcell.iapp + 1

advance(100)

save simulation('fork2 ' + default filename())

3.3 Example: One Hodgkin-Huxley Cell

This example uses the Hodgkin-Huxley model hh.snnet defined in 3.1.10. It simulates one
cell for a total time of 200 ms, where it is at rest for the first 50 ms, then subject to an
applied current for 20 ms. Results are saved, in full, to the directory results to be analyzed
later. Here the protocol is executed using the run command, described in chapter 4. If this
program is saved in hh.py, then it may be run by typing “python hh.py” at the command
line.

from snnet import *

# define the protocol

def simulation():

# create one Hodgkin-Huxley cell

h cell = neurons('hh.snnet')

# run until t=50 ms

run to(50)

# apply a current, run for another 20 ms, remove the current

h cell.iapp = 5

advance(20)

h cell.iapp = 0

# advance to t=200 ms

run to(200)

# run the simulation

run(simulation, 'results', integrator=xpp integrator, save type=full)
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3.4 Example: Wagner et al, 2004

cell = """

# total cell volume (including any compartments)

volume = 1

# IP3 dynamics

vprod = .075 # uM / s (in principle depends on surface area/volume ratio)

kprod = .4 # uM

v1 = .001 # uM / s

v2 = .005 # uM / s

v3 = .02 # uM / s

lambda = 30

k0 = .39 # uM

k1 = 2.5 # uM

k2 = .5 # uM

k3 = 30 # uM

# declare ca and ip3 to be a concentration (necessary for using flux)

# this means that ca depends on effective volume

# effective volume = total volume - volume organelles

concentration ca, ip3

# IP 3 degradation and production

th = ca / (ca + k0)

jkinase = (1 - th) * v1 * ip3 / (ip3 + k1) + th * v2 * ip3 / (ip3 + k2)

jphos = v3 * ip3 / (ip3 + k3)

# vprod includes the effects of cell surface area / volume ratio

jprod = vprod * ca ** 2 / (ca ** 2 + kprod ** 2)

# still need to divide by the effective volume

ip3' = (jprod - lambda * (jkinase + jphos)) / effective volume

# initial conditions

ca = 1

ip3 = 1.5

"""

er = """

# calcium regulation

vip3r = 8.5 # /s
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kip3 = .15 # uM

kact = .8 # uM

vleak = .01 # /s

vserca = 1 # uM / s (was .65 in W et al)

kserca = .4 # uM

# channel state

kinh = 1.9 # uM

tau = 2 # s

# volume of ER

volume = .17

concentration ca

ip3 = external ip3

cai = external ca

hinf = kinh / (kinh + cai)

m = ip3 / (ip3 + kip3) * cai / (cai + kact)

jip3r = vip3r * m ** 3 * h ** 3 * (ca - cai)

jleak = vleak * (ca - cai)

jserca = vserca * cai ** 2 / (kserca ** 2 + cai ** 2)

# calcium flux (outward = positive)

ca flux jip3r - jserca + jleak

# IP 3 receptor inactivation

h' = ((hinf - h) / tau)

# initial conditions

h = 0

ca = 3.94117647

"""

def simulation():

c = neurons(cell)

c.add compartment(er)

advance(200)

data = run(simulation)

subplot(2, 1, 1)
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plot(data.t, data.ca0)

ylabel('[Ca$^{2+}$]$ c$ in $\mu$M')

subplot(2, 1, 2)

# ca is a property of the cell, which has index 0

# h is a property of the ER, which has index 1

plot(data.ca0, data.h1)

xlabel('[Ca$^{2+}$]$ c$ in $\mu$M')
ylabel('$h$')

savefig('wagner2004.pdf')



34 CHAPTER 3. DEFINING THE SIMULATION



Chapter 4

Running simulations

Execute simulation protocols using snnet’s run function. The run function allows the spec-
ification of multiple runs (useful for studying the effects of heterogeneities or other random-
ness), parameter sweeps, and automatic parallelization.

4.1 Basic usage

The simplest common usage of the run command is to run a simulation protocol once and save
the results in a directory. As an example, if we have a protocol that we named simulation

in its def statement and we wish to save the results in a folder results, we would use

run(simulation, 'results')

This or any other run command should be written unindented, below the def block defining
the protocol.

The results are saved in the file 0.sdat in the specified directory. If the directory does not
already exist, it will be created when the data is ready.

If only one simulation is run, run returns a SimData object containing the full data. This is
useful for immediately performing analysis on the results. If we are confident that we will
never want this data again, we can omit the directory name from the run function call to
avoid unnecessarily using disk space. For example, one might write:

35
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data = run(simulation)

4.1.1 Save types

By default, run saves all the state variables at all of the time points evaluated. While snnet
attempts to compress its save files, large or long simulations will lead to large file sizes. To
combat this problem, snnet provides multiple save options. Four are provided – spikes,
enhanced, csv, and full – and the advanced user can define new save types by inheriting
from SimData in snnet/sim data.py and redefining the relevant methods.

The spikes save type discards most data except for the spike times. The enhanced type is
the same as spikes except it also preserves field potentials. csv saves all the state variables
at all time points in a comma separated variable file suitable for importing into other tools.
Note that state variable values do not fully describe the simulation; for example the csv

format discards connectivity information that is preserved in the other built-in save types.
Finally, full saves all of the simulation data and is the type that is returned by run calls
that only perform one simulation.

To specify the save type, simply provide a save type argument to run. For example:

run(simulation, 'results', save type=spikes)

4.1.2 Repeated runs

To study the effects of heterogeneities, random networks, or other randomness in a model,
one must run that model many times. To do so, provide a num times parameter to run,
specifying the number of times to run each protocol with the same set of parameters. For
example:

run(simulation, 'results', num times=10)

runs the protocol simulation 10 times using identical parameters. Results are saved in the
files 0.sdat, 1.sdat, . . . 9.sdat in the directory results. The number in the filename is
the random seed used in that particular simulation. To make the first simulation have a
nonzero random seed, provide a start id parameter with a positive integer value.
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4.1.3 Parallelization

Computers with multiple cores or multiple processors can take advantage of snnet’s paral-
lelization. To run multiple simulations simultaneously (in the case of repeated runs or pa-
rameter sweeps), provide a num parallel parameter to run specifying the maximum number
of simulations to perform simultaneously.

For example, on a four core processor, one might run

run(simulation, 'results', num times=10, num parallel=4)

Snnet keeps the entire simulation state variable history in memory until the simulation is
complete. Running many large or long simulations simultaneously could potentially use
up all available memory. To avoid this problem, run a test to see how much memory one
simulation requires and choose num parallel accordingly.

In Linux and OSX, parallelization is process-based, while in Windows – due to underlying
architectural differences – parallelization is thread-based. Standard python uses a global
interpretor lock, so thread-based parallelization in python is less efficient than process-based.
Other implementations of python might not share this limitation.

4.1.4 Integrators

Snnet comes with four different interfaces to integration routines: fast xpp integrator,
xpp integrator, matlab integrator, matlab mex integrator. Additional integration in-
terfaces may be defined by creating a class inheriting from snnet.integrator.Integrator.

Select the integrator to use for a run by passing its name to the integrator parameter of
run. For example, to run using the xpp integrator, use

run(simulation, integrator=xpp integrator)

By default, snnet uses the fast xpp integrator, which requires xppaut and gcc, on Linux
and OSX. Since that interface does not support Windows, snnet uses xpp integrator by de-
fault on Windows. One advantage of using either of these interfaces is that xppaut supports
a wide range of integration methods.
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Options

Different integrators support different options. They may be set using dot notation, but
these options must be declared in the control code prior to invoking the run function. For
example, to set the step size dt on the xpp integrator to .01, write

xpp integrator.dt = .01

Options and default values for the various integrators are as follows:

� xpp integrator

– dt = .05

– method = 'qualrk'

– bounds = 10000

� fast xpp integrator

– dt = .05

– method = 'qualrk'

– bounds = 10000

– gcc flags = '-m32'

– delay = 0

� matlab integrator

– max step = .05

– method = 'ode23'

– rel tol = 1× 10−3

� matlab mex integrator

– max step = .05

– method = 'ode23'

– rel tol = 1× 10−3
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4.2 Parameter sweeps

It is often useful to examine how a model depends on its parameters. Generally one wants
a model where the qualitative results do not change for small variations in parameters, but
it may be important to see how the firing rate depends on the applied current, etc. . . Such
explorations are also useful when initially picking parameters.

In the simplest case, one or multi-dimensional parameter sweeps can be performed simply
by modifying the call to run to include a sweep parameter. The sweep parameter takes
a python dict whose keys are parameter names and whose values are the corresponding
parameter values to try. When using run to save, the results of a sweep will be stored in a
hierarchical directory system by parameter name then value (repeating as necessary) within
the specified directory.

For example, to perform a two-dimensional parameter sweep, testing the protocol sim using
all 12 = 3× 4 combinations of gsyn in 1, 2, or 3, and iapp in .5, 1.5, 2.5, 3.5, and saving in
the folder data, write

run(sim, 'data', sweep={'gsyn': [1, 2, 3], 'iapp': [.5, 1.5, 2.5, 3.5]})

The sweep parameter also accepts a list of dict objects, each one of which is swept inde-
pendently.

If num times > 1, then each parameter set will be tried once before any parameter choices
are repeated.

4.2.1 Modifying previous simulation parameters

Sometimes it is useful to start a parameter sweep or other exploration from the results of
a prior simulation or simulations. Assuming the results were saved (with any extension not
consisting solely of numerals) in a directory according to the default filename standards
of a parameter name, an underscore, and a parameter value (repeated, with each repeat
separated by an underscore), then the function parameters from dir can be used to create
a list of dict objects suitable for using with sweep.

For example, to run a new simulation protocol sim2 using the parameters used to make
figures stored in the directory sim1figs, use:
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params = parameters from dir('sim1figs')

run(sim2, sweep=params)

A for loop can be used to modify the old parameters to allow another parameter sweep.
For example, to run with everything as in sim1figs except with iapp being swept over 0,
1, and 2, use:

params = parameters from dir('sim1figs')

for p in params:

p['iapp'] = [0, 1, 2]

run(sim2, sweep=params)

4.3 Advanced

4.3.1 Temporary files

Snnet uses both pipes and temporary files to communicate with other programs to perform
integration. The use of pipes reduces the amount of time needed for file access. For example,
on Linux and OSX, the results of an integration pass directly from the integrator to snnet;
no file access is needed.

Temporary files contain a representation of the model in a form understood by the integrator,
and are sometimes useful for debugging new models.

To leave a copy of the temporary files used for the last integration under a protocol in the
current directory, include the option leave temp files=True when calling run.

The option do cleanup=False leaves temporary files in the location they were created in
the event that a simulation fails.

To specify where to create temporary files, pass the option temp dir handler=f where f

is a python function of no variables that returns a path on which to store temporary files.
The default is to store temporary files in the current directory except under Linux, where
the ramdisk /dev/shm/ is used, if available. Use of the ramdisk speeds up data transfer and
ensures that any residual temporary files will be purged automatically on reboot.
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4.3.2 Continuing after unsuccessful integration

A simulation may fail if the selected integrator is not able to stably integrate the model. By
default, if such a failure occurs, the run command raises an exception and all subsequent
integration is canceled. Integration failure is typically a sign that one should adjust the step
size, choose a different integration method, or alter the model.

Under rare occasions (for example, when trying to determine the parameter range where
integration is stable), it is desirable to continue on with the next parameter set instead of
shutting down on failure. In these cases declare continue after failure=True in the call
to the run function.
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Chapter 5

Analyzing model results

Data access is through sim data.SimData objects. For a list of all supported methods and
properties, see Appendix B.

Snnet provides routines for common neuroscience tasks and tools for simplifying analysis,
but it is not intended to provide extensive analysis tools; instead, the user should utilize
standard math libraries. Scipy maintains a large list of scientific python software at http:

//www.scipy.org/Topical_Software.

5.1 Saving data

There are two main ways to save simulation results. The first, as we have already seen, is
to specify an output directory when invoking the run command. The second is to invoke
save simulation within a simulation protocol. This function takes a directory name and op-
tionally a filename and/or a save type. For example, to save the spike times for the currently
running simulation in the folder foo with a filename according to the default filename

function (which separates overridden variables and their values with underscores), use

save simulation('foo', default filename(), save type=spikes)

5.2 Getting data

There are three main options for getting a SimData object to work with, depending on when
you want it:

43
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5.2.1 During a simulation

Sometimes it is useful to be able to access the simulation data during a simulation. For
example if one is doing sweeps to locate a region of parameter space where the model exhibits
a certain behavior, one might wish to check the status of a simulation part-way through and
abort simulations that are not going to exhibit the desired behavior.

To get the data in this case, assign the result of simulation data() to a variable. For
example:

data = simulation data()

5.2.2 Immediately after a single simulation

If the run function is used to only run one simulation at a given time (that is, no sweeps,
num times is 1 or omitted), then it will return a SimData object. In such a case, there might
not be a need to save the data to the disk. For example, to run the simulation protocol sim
and return the result in data, write

data = run(sim)

5.2.3 By loading saved data

To load saved data from a file, use the load simulation function and pass in the name of
the file. For example, to load the data from the file bar.sdat, use

data = load simulation('bar.sdat')

Note that unlike the previous two methods which always return all of the simulation data
(the equivalent to saving with the full save type), the data available via load simulation

necessarily depends on the save type.

5.3 Working with data

For more methods, see Appendix B.
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5.3.1 Individual simulations

For data containing the state variables, there are two ways of accessing their time course
information: the most flexible way is to use indexing notation where the first index specifies
the variable name as a string and the second specifies the the index of the neuron in question
(if you want the value of a global state, only use the first index). For example, to get the
time course of neuron 3’s variable v, use

data['v', 3]

whereas to get the value of the global variable w, use

data['w']

If the indices and the variable names are known in advance and the variable names do not
end in a number, then the time course information can be obtained using dot notation where
the variable name and id number have been concatenated together. For example, the above
two examples become

data.v3

and

data.w

In principle, almost all of the data is contained in the state variables, however snnet provides
some useful methods and properties on SimData objects (accessible via the dot notation). A
partial list with brief explanations follows, for more, see B.

� active – the number of cells active at given times

� connections – connection matrix information

� cv – coefficient of variation of ISIs for specified cells

� field potential – field potential of arbitrary group of cells

� field potentials – dict of field potentials by cell type

� isi – interspike intervals

SAY MORE HERE
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5.3.2 Groups of simulations

Snnet functions

Snnet provides several functions that look at the properties of groups of simulations. A
partial list with brief descriptions follows. For more information, see Appendix A.1.

� avg active over time – find average number of cells active at specified times

� collect cv – get coefficient of variation of ISIs

� collect isi – get ISIs from all simualtions

Running custom analysis code

The function run f on dir is used to run custom analysis tools on all of the data files
contained in a given directory (and, optionally, its subdirectories). It supports automatic
parallelization and returns a list of the function return values. For example, to run a custom
function analyzer on all of the data files in the directory foo but not its subdirectories five
at a time and return the results in bar, write:

bar = run f on dir(analyzer, 'foo', num parallel=5)

For more details see Appendix A.1.

5.4 Graphics

5.4.1 General plotting

Snnet is not a graphics library, however it automatically provides two graphics methods if
the appropriate software is installed on your machine:

matplotlib

Snnet imports matplotlib, if available, which allows basic plotting functions. For details,
see http://matplotlib.sourceforge.net/.

http://matplotlib.sourceforge.net/
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As an example, suppose data is a SimData object of type full. To make a new figure, plot
the value of v from neuron 5 (recall: numbering starts at zero, so this is the sixth neuron
defined) vs time t, add labels, and save in the file foo.pdf, use:

figure()

plot(data.t, data.v5)

xlabel('t (ms)')

ylabel('v (mV)')

savefig('foo.pdf')

close()

gnuplot

Gnuplot is a graphics package available from http://www.gnuplot.info/. Snnet provides
an interface compatible with version 4.2 or later. For details, see Appendix A.4.

The snnet interface to gnuplot requires the ImageMagick graphics conversion programs:
http://www.imagemagick.org/.

The previous example can also be done using the gnuplot interface as follows:

gnuplot('foo.pdf', data.t, data.v5, x label='t (ms)', y label='v (mV)')

5.4.2 Raster plots

Use raster to plot raster diagrams of network activity, grouped by cell type. raster takes
either a SimData object or a filename containing data to plot as the first argument.

In simplest usage, generate a raster plot of data via

raster(data)

These plots are generated using matplotlib and thus may be modified by other matplotlib
graphics commands. The raster function does not save the image; to do so, use matplotlib’s
savefig function:

http://www.gnuplot.info/
http://www.imagemagick.org/
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raster(data)

savefig('data.pdf')

To generate raster plots for all data files in a directory, use make rasters.

Additional parameters allow shading time intervals and choosing whether or not to display
the field potentials. For full details, see Appendix A.4.
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Troubleshooting and Support

6.1 Online discussion group

Join the discussion group at http://groups.google.com/group/snnet to share code, dis-
cuss implementing your model in snnet, and more with other users.

6.2 Interactive graphics in matplotlib

Snnet automatically imports matplotlib, if available, because it uses the package for produc-
ing raster diagrams. To allow for working over remote connections, snnet sets the backend
of matplotlib to Agg which is noninteractive.

To run an interactive graphics session with snnet, simply import matplotlib prior to import-
ing snnet.

6.3 More helpful error messages

To get line numbers and other useful traceback information for errorhttp://www.gnuplot.info/s,
set num parallel=1 when invoking the run function.
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6.4 Compilation errors with fast xpp integrator

The fast xpp integrator integrator assumes that xppaut is compiled as a 32-bit program,
even if the system is 64-bit.

6.4.1 64-bit xppaut

If, instead, snnet is to be run on a machine with a 64-bit version of xppaut, modify the
control file to redefine the fast xpp integrator before use:

fast xpp integrator = integrator.GccXppIntegrator(gcc flags='-m64')

6.4.2 Cross compiling

Some 64-bit Linux distributions do not include the libraries necessary for cross-compiling to
work with 32-bit xppaut. Install the necessary libraries by typing

sudo apt-get install libc6-dev-i386

on the command line.

6.5 Unable to run xpp integrator or fast xpp integrator

To use either of these integrators, snnet requires that xppaut is on your system path. Test
if this is the problem by opening up a terminal and typing “xppaut”. If everything is setup
correctly, a file-selection dialog box will appear1. If, instead, an error appears about not
being able to find the program, either adjust the system path or move the xppaut binary to
a location on the path.

1This is not necessarily the case. xppaut needs an X-server to display graphics, but not to perform the
calculations needed by snnet.



Appendix A

snnet API

Many parameters have default values, specified in the following after an equals sign. Python
allows you to specify named parameters in any order, if you use the variable name = value
syntax. All of the following are loaded via from snnet import *.

A.1 Analysis

avg active over time(dir name, times, cells=None, num parallel=1, activity window=100)

Compute average number of cells active at given times.

Parameters:
dir name – the directory containing the simulations
times – the times to check
cells – which cells to look at (a list of indices or a string naming a cell type or a cell group)
num parallel – how many calculations to run simultaneously
activity window – how long ago a cell may have fired and still count as active

Note:

If cells is None or omitted, works with all cells.

collect cv(dir name, cells=None, time range=(-inf, inf), combine sims=True, num parallel=1)

Collect the coefficient of variation (CV) for the interspike intervals.

Parameters:

51
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dir name – the directory containing the simulations
cells – which cells to look at (a list of indices or a string naming a cell type or a cell group)
time range – the time interval in which to compute the CVs
combine sims – if True, group all simulations together; else create lists for each simulation
num parallel – how many calculations to run simultaneously

Note:

If cells is None or omitted, computes the CVs for all cells.

collect isi(dir name, cells=None, time range=(-inf, inf), combine cells=True, combine sims=True,
num parallel=1)

Collect the interspike intervals (ISIs).

Parameters:
dir name – the directory containing the simulations
cells – which cells to look at (a list of indices or a string naming a cell type or a cell group)
time range – the time interval in which to compute the ISIs
combine cells – if True, group ISIs from all cells in a simulation together, else create

separate lists for each cell
combine sims – if True, group all simulations together; else create lists for each simulation
num parallel – how many calculations to run simultaneously

Note:

If cells is None or omitted, computes the ISIs for all cells.

compute spike times(t, v, threshold=0)

Return a list of the times t when v crosses threshold.

cv(items)

Returns the coefficient of variation (CV) of the items.

cv(items) = std(items) / mean(items)

discard nans(*items)

Return a copy of the list(s) items without any NaNs.
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frequencies(t, y, scale=1000)

Compute the magnitudes of frequencies present in y. This is essentially the output of the
fast fourier transform algorithm.

Returns two lists, the first of frequencies, the second of magnitudes.
Assumes t is evenly sampled.

The default setting of scale=1000 assumes t in ms and we want frequency in hertz.

Requires numpy.

mean(x)

Compute the algebraic mean of x. The version from numpy is used, if available, else snnet
provides one.

run f on dir(f, dir name, enter subdirs=False, num parallel=1, temp dir='.')

Runs a function on the simulation data from each sdat (or pkl) file in dir name.

Parameters:
f – the function to run
dir name – the name of the directory
enter subdirs – should we apply f on files in subdirectories
num parallel – maximum number of evaluations to run simultaneously
temp dir – a string or function evaluating to a string representing a temporary directory

Returns:
A list of the return values. (Or lists of lists, etc. . . if entering subdirectories.)

Note:

f may take 1 or 2 arguments. If f takes only 1 argument, passes the data; if f takes 2,
passes data as first argument, filename as second.

Parallelization is with processes on Linux and OSX; otherwise, threads.

If num parallel > 1, then f must return a picklable object. (This is not usually a prob-
lem.)
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simulation data()

Return a SimData instance corresponding to the current simulation.

Do not use this instance after changing the simulation; that behavior is undefined and
subject to change.

std(x, ddof=0)

Compute the standard deviation of x with ddof degrees of freedom. The version from numpy

is used, if available, else snnet provides one.

A.2 Control

advance(t)

Run the simulation for an additional time t. See also run to.

copy simulation()

Return a copy of the current simulation. Typically not needed, unless using set simulation.

current simulation()

Return the current Simulation object.

This is not typically needed, but provided for advanced simulation control. For more, do a
help on the object returned.

default value(var, val)

Set a default value in the simulation.

This will override the values specified in the snnet file of any dynamics defined after this
command has been run (but not those already defined.)

Values previously overridden (e.g. via sweep or param in run, as well as previous default value
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calls) take precedence.

See also value.

end fork()

End a simulation fork and return to the previous state. See also fork.

fork()

Initiate a new fork in the simulation. State will be saved so that snnet can return to this
point. See also end fork.

get run id()

Return the run id, the default filename.

For simulations started via run, this is a number corresponding to the random seed used.

global dynamics(dynamics, ignore case=False, verify defined=True, **params)

Load shared (global) dynamics from dynamics.

Parameters:
dynamics – the snnet source
ignore case – should we drop capitalization
verify defined – should we check dynamics for completeness
params – parameters with values

Note:

dynamics can be either a filename or a string containing equations.

parameters set here override the values in the snnet but are themselves overriden by sweeps
or the param argument to run.

group(name)

Return the cell group with the given name. Typically not needed.
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integrator method(method=None)

Set or get the integrator. This is typically used only in simulations not controlled by run.

neurons(neuron, num=1, potential var=None, ignore case=False, verify defined=True, **params)

Define a group of neurons from a snnet.

Parameters:
neuron – the snnet source
num – how many neurons to define
potential var – the variable corresponding to membrane potential, if any
ignore case – should we drop capitalization in the snnet?
verify defined – should we check dynamics for completeness
params – any parameter changes to make to the snnet

Note:

neuron is a string containing either a filename or snnet equations.

Any changes to parameters made here can be overriden by a parameter sweep, or with
the param argument to run.

run(sim, output dir=None, params={}, sweep={}, integrator=default integrator, num times=1,
save type=full, num parallel=1, post run=None, start id=0, do cleanup=True,
temp dir handler=default temp dir handler, leave temp files=False,
continue after failure=False)

Run a series of simulations.

Parameters:
sim – function defining the simulation protocol
output dir – directory to store the results in (string, None, or function)
params – a dict of parameters to override with values
sweep – a dict of arguments to sweep over
integrator – which integrator to use
num times – how many times to run each parameter set
save type – output file handler
num parallel – how many simulations to run simultaneously
post run – a function to call after each simulation
start id – the simulation id # to start at (use for going back and running more)
do cleanup – should we delete temp files when a simulation fails?
temp dir handler – function returning a string pointing to a directory to use for storing
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temporary files
leave temp files – should temporary files be left in the local directory after running a

simulation
continue after failure – if integration fails, should we keep trying?

Notes:

If only one simulation is ran, returns a Full SimData object with the results.

If output dir is omitted or None, does not automatically save the results. Use save simulation

to save manually.

If output dir is a function (or callable class), it must accept a dict of overridden param-
eters and return a string.

The output dir (or the result of calling that function) is created if it does not already exist.

post run must be either None or a function of three variables: data, run id, params. Here,
params is a dict of overriden parameters (if any).

sweep may contain multiple variables, in which case all possible combinations will be tried.
This can get large very quickly.
e.g.

run(simulation, out dir, sweep = {'iapp': [1, 5, 10], 'gsyn': [.01, .02]})
will run 3× 2 = 6 simulations.

sweep may also be a list of dicts to sweep, which can be used for doing parameter sweeps
on multiple base parameter sets simultaneously. parameters from dir is helpful for setting
these up.

run to(t)

Run the simulation until time t. See also advance.

save data(data=None)

Append to or get the current list of saved data. This is data that is saved in every sdat file
that might not normally be saved. This list is empty unless set via this function.

set initial time(t)

Set the initial time for the simulation to t.



58 APPENDIX A. SNNET API

set max advance time(t)

Sets the maximum time a simulation will advance in one step. Larger advances will be
automatically decomposed into a series of advances under this limit.

Smaller values potentially reduce memory needs but increase run time.

Applies only to the current simulation.

It is not typically necessary to manually set this value.

set run id(run id)

Sets the run id, the default filename. For simulation protocols controlled via run, the origi-
nal default is the random seed.

set simulation(sim)

Used for running multiple simulations with the same initial portion.

Pass in either a Simulation or a Full instance.

Warning:

In most cases, you will want to pass in a copy of a Simulation, not the original.

See also copy simulation, fork and end fork.

value(var, val=None)

Return value of the simulation parameter var if it exists, else val.

A.3 Files

create subdirectories(base, *subdirs)
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Create subdirectories (one or many) in the directory base.

If the subdirectory already exists, it will not be modified. If the base directory path does
not exist, it will be created as well. This function is useful when analyzing results.

Examples:
create subdirectories('base folder', 'results')
create subdirectories('base folder', 'potentials', 'rasters')

default filename(extension=None, include run id=True)

Return a filename based on the parameter sweep.

Parameters:
extension – a filename extension to append
include run id – should we include the run id in the name?

Names are generated by writing the parameter names and values separated by underscores,
then the run id (after an underscore, if include run id is True).

Example:

If the run command sweeps or overrides gna = 2 and gk = 1 and run id = 0, default filename()
returns 'gk 1 gna 2 0' or 'gna 2 gk 1 0' (no guarantee is made about the order). Likewise,
default filename('csv') returns 'gk 1 gna 2 0.csv' or 'gna 2 gk 1 0.csv'

default filename rule(filename)

Takes a path of the form a/b/c.sdat, returns a b c.pdf. Useful for giving meaningful names
to images corresponding to data saved during parameter sweeps with the run function.

export to csv(filename, *args, **kwargs)

Save lists to csv file.

Parameters:
filename – output csv file
list1, list2, ... – lists to output to the file
separator – separator to use between data points.

Note:
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filename can be a string name or a file object.
If filename is a file object, will leave open when done.

If no lists are passed, no file will be created.

separator defaults to ', '

Examples:
http://www.gnuplot.info/ export to csv('results', x, y)

export to csv('results', x, y, separator=' ')

load simulation(filename)

Load the simulation stored in filename. If filename refers to a directory, loads the file 0.sdat
from that directory.

num sims(dir name)

Return the number of simulations in the directory dir name.

parameters from dir(directory)

Returns the parameters for files saved in the given directory.

Assumes the filenames were chosen according to default filename.

Ignores extensions, assuming at least one character of the extension is not a number.

save simulation(output dir, filename=None, save type=full)

Manually saves the current simulation. Useful for forks, saving intermediate results, and
simulations initiated without using run.

If filename is None, uses current run id.



A.4. GRAPHICS 61

A.4 Graphics

Snnet imports everything in matplotlib.pyplot, if installed, but those functions are not
part of snnet and not covered here.

gnuplot(filename, *data, **figure properties)

Use gnuplot to plot a line graph.

data consists of the x and y values to plot followed by any line style information.
Supported line style parameters:

line type – solid, dash, dot, dot-dash, or a number
line width – thin, normal, thick, or a number
color – line color
axis – which axis to plot against: 1 (default) or 2
legend – identifying string for the legend

Supported figure properties:
x lim
y lim
x2 lim
y2 lim
x label
y label
grid – True or False
title
legend – anything that can go after ‘set key’ in gnuplot
use color – can be True (default) or False

Example:

gnuplot('output.pdf', x1, y1, 'legend', 'graph1', x2, y2, x3, y3, title='3 graphs')

Note:

Use the legend figure property to set the location, e.g. 'left bottom'

If no legends are set, the key is not displayed.

Requires gnuplot and convert to be installed.

make rasters(data dir, image dir= '.', plot types=None, shading=None, shading color=[.5,
1, 1], show field potentials=True, filename rule=default filename rule, image processing=None,
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num parallel=1)

Make raster diagrams for all sdat files in a directory (and its subdirectories).

Parameters:
data dir – the directory with the data
image dir – the directory to put the image files
plot types – the types of neurons to plot (defined by filename)
shading – list of time intervals to shade (or None)
shading color – rgb color triplet for shading
show field potentials – do we plot the field potentials ignored if f.p. data not in data
filename rule – a function that takes a path in data dir, returns a filename for the image
image processing – a function to run on the figure before it is saved (or None)
num parallel – maximum number of files to work on simultaneously

Note: If plot types is None, then plots for all types of neurons.

Requires matplotlib.

raster(data, plot types=None, shading=None, shading color=[.5, 1, 1], show field potentials=True)

Plot a raster diagram of activity.

Parameters:
data – the SimData object (or filename containing SimData) to plot
plot types – the types of neurons to plot (defined by filename)
shading – list of time intervals to shade (or None)
shading color – rgb color triplet for shading
show field potentials – do we plot the field potentials ignored if f.p. data not in data

Requires matplotlib.

A.5 Noise

exponentially decaying noise(num=1, firing rate=5, decay rate=2, delay=0, max value=1)

Return num sources of exponentially decaying noise.

Parameters:
num – how many noise sources to create
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firing rate – firing rate in Hz (or function)
decay rate – in ms
delay – period synapse stays elevated before decaying
max value – the peak value of the artificial synapse

periodic(freq)

Returns a callable object corresponding to periodic firing at a given frequency.

square wave noise(num=1, firing rate=5, duration=1, max value=1)

Return num sources of square wave noise.

Parameters:
num – how many noise sources to create
firing rate – firing rate in Hz (or function)
duration – in ms
max value – the peak value of the artificial synapse

A.6 Miscellaneous

name time(name, toffset=0)

Assign a name to a particular time. This time can then be located by the analysis functions
by name.

Parameters:
name – the name to assign
toffset – the offset from the current simulation time

overrides()

Return the parameter overrides specified in the run command, if any

rand(number)

Get a random number using the snnet syntax.
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Examples:

rand('[3 : 5]') – returns a uniform r.v. float between 3 and 5
rand('3 [2]') – returns a normal r.v. float with mean 3, std dev 2
rand('5 [1%]') – normal r.v. float, mean 5, std dev 1% of mean (.05)

Random numbers are generated via Python’s random module, which uses the Mersenne
Twister algorithm (in Python 2.3+).

random instance()

Return the random instance used by snnet.

Example:

r = random instance()
r.uniform(5, 12) – uniform r.v. between 5 and 12
r.betavariate(alpha, beta) – beta r.v.

The return value is an instance of random.Random. See the Python documentation for
more information.

Simulations initiated via run have the random seed set to the run id.

simplify(expression)

Simplifies the expression the same way a snnet file would be simplified. Uses sympy, if
available.

Example:
simplify('1 + 1') – returns 2

total volume(volume=None)

Set or get the total volume (extracellular + cellular). This is used in experiments where
cells or organelles have changing volume.
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Data API

SimData objects are returned via snnet’s load simulation, simulation data, and some-
times run functions, defined above. Depending on their save type, they will support some
or all of the following properties and methods.

If data is a SimData object, and you wish to use the method field potential defined
below on the cells named cells and store the result in the variable fp, call it via

fp = data.field potential(cells)

If the save type stores the values of state variables, then one can access (for example) variable
v of neuron 10 from the SimData object data via either data.v10 or data['v', 10]. The
first option cannot be used with variable names ending in numbers, because that would be
potentially ambiguous. The second option also has the advantage of allowing programmatic
control, e.g. via python’s for loops.

State variables for global dynamics are accessed similarly, except there is no index to specify.

B.1 Methods and Properties

active(times, cells=None, activity window=100)

Return the number of specified cells active at times.

Parameters:
times – list of times

65
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cells – the cells to check (indices, cell type, or cell group)
activity window – how long ago a cell may have fired and still be considered active

Note: If cells is None, returns the total number of active cells.

compartments

A list of the subcompartments belonging to each neuron (or organelle).

connections

A list of lists of each neuron’s pre-synaptic input sources.

For example, if neuron 1 received input from neurons 2, 5, and 7, then connections[1]

would return [2, 5, 7].

cv(cells=None, time range=(-inf, inf), combine cells=False)

Returns the coefficient of variation (CV) of the interspike intervals of cells.

Note:

Returns the CVs of all cell types if cells is None.

Results limited to those spikes occurring in the interval time range.

If combine cells is False, then returns a list of CVs, one for each neuron. If True, returns the
average CV of the selected cells.

data

A list of everything that was saved (in order) via save data.

expression(var, id, t, global dynamics=False)

Return the algebraic expression for a given variable at a given time.

Parameters:
var – the name of the variable
id – the cell (or global dynamics) id
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t – the time
global dynamics – set True to get global dynamics id (instead of neuron)

field potential(cells=None)

Return the average membrane potential of a group of cells.

Parameters:
cells – can be a named group, a filename, or a list of indices

Note:

If cells is None, returns the average membrane potential of all the cells.

Since this method returns the field potential for an arbitrary group of cells, it requires a
save type that saves all membrane potentials. In the standard distribution, full is the only
such save type. Use the field potentials property with enhanced and any other user-
defined save type to get the field potential for all cells of a given cell type.

field potentials

A dict of the field potentials, keyed by cell type.

get indices(cells=None)

Return the indices of the cells specified.

Parameter:
cells – a list of indices or a string naming a cell type or cell group

Note: If cells is None, returns all indices.

index(var, neuron index=None)

Returns the index in the list of state vectors of variable var from the neuron with index
neuron index. If neuron index is none, returns the index of the global variable var. This
method is not typically needed.

isi(cells=None, time range=(-inf, inf), combine cells=False)
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Returns the interspike intervals (ISIs) of cells.

Note:

Returns the ISIs of all cell types if cells is None.

Results limited to those spikes occurring in the interval time range.

If combine cells is False, then returns a list of lists of ISIs, one list for each neuron. If
True, returns a single list of ISIs covering all of cells.

potential(i)

Return the membrane potential time course for neuron i.

run time

The end time of the simulation.

spike times

A list of lists of spike times for each cell.

state variables()

Return a list of accessible state variables.

t

The vector of times at which state variables were computed.

time(t)

Return the time corresponding to t. t may be either a numeric value or the name of a
saved time point.

types
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A list of the cell types used in the simulation. Cell types are identified based on the string
used to create them in the neurons function.
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