(*» Evaluate each cell by pressing shift-return or the enter key on the numeric keypad =*)

(*» Insert matrices by right clicking and
selecting insert table/matrix and then selecting matrix =*)

(2 4]
a= ;
2 4

(* You can also enter matrices as a list of lists with just the keyboard as follows =)
b= {{1, 2}, {3, 4}};

(» We can display b as a matrix by typing //MatrixForm =*)

b // MatrixForm

[1 2
3 4

(» Bigger matrices are fine too #)
1 2 3
c=|0 0 O|;
0 0 O
(* You can enter vectors the same way =)

(3]

(*# Vectors and matrices can have variables x)
w
r t
x
V2= Y[}
z
(* Find the norm of a vector with norm x)
Norm|[v]

Vs

(* The norm formula is slightly more complicated if your scalars
can be complex instead of real, but that won't affect you for 568 x)

Norm[v,]

\/xConjugate[x}1—yConjugate[y]1—2Conjugate[z]

(*» Take the projection of v=(x,y)
onto the line with direction vector (D;,D;) =*)

Projection[{x, y}, {D1, D2}, Dot] // MatrixForm

D; (xD1+yDz)
DZ+D3
D (xDi+y D2)

D?+D3

(* Multiply matrices using . %)

2 | Mathematica Linear Intro.nb

a.v // MatrixForm

ol

d.v // MatrixForm

g+2w
r+2t

d.d // MatrixForm

g?+rw qw+tw]

gr+rt tl+rw
(* This is the same as raising d to the second power, which we can do as follows: *)
MatrixPower[d, 2] // MatrixForm

g’+rw qw+tw

gr+rt t?+rw

(# If there is a general form for a matrix to a power,
can solve for that as well. Here we raise a matrix to the nth power =x)

11
MatrixPower[(o 1) , n] // MatrixForm

[1n
0 1

(* The inverse is the same as taking the matrix to the -1 power,
but the shorter way is to just use Inverse *)

MatrixPower[d, -1] // MatrixForm

t w
qt-rw qt-rw

_ r q
gt-rw gt-rw

Inverse[d] // MatrixForm

t w
qt-rw gt-rw

_ r q
gt-rw qgt-rw

(* Many matrices are not invertible, but every matrix has a pseudo
inverse. You use the pseudo inverse when finding least squares solutions. *)

1 2
PseudoInverse[[1 2.1] // MatrixForm
2 3

-1.13878 -1.55102 1.8449 j
0.77551 1.02041 -0.897959

(*» Take the transpose of a matrix with Transpose *)

Mathematica Linear Intro.nb | 3

Transpose[d] // MatrixForm

[t
w t

(* Recall: A matrix is symmetric if it equals its own transpose,
so let's test to see if a and b are symmetric *)

a == Transpose[a]

True

b == Transpose[b]

False

(» That is, a is symmetric and b is not. Note we use two =
to test for equality. One equal sign is an assignment =)

(* We can row reduce matrices or find their nullspace =)

(# NullSpace returns a basis for the null space,
but transposed from the way you are used to, so we transpose it)

Transpose[NullSpace[c]] // MatrixForm

-3 -2
0 1
1 0

(» That is, the vectors (-3;0;1) and (-2;1;0) form a basis for the nullspace of c)

(* Since b is invertible, the only vector in the null space is the zero vector...
the nullspace is zero dimensional (just one point), so the basis set is empty =)

NullSpace[b] // MatrixForm

{1

(» Row Reducing =*)

RowReduce[a] // MatrixForm
1 2

o o

RowReduce[b] // MatrixForm
[1 0
0 1

(*» Recall we can use row reducing to solve an augmented matrix. For example: =)

4 | Mathematica Linear Intro.nb

1 2 1
RowReduce[()] // MatrixForm
4 5 2
1
10 -3
0 1

3
(# That is, we have solved the linear system of equations:

X + 2y = 1 and
4x + 5y = 2

for x and y, and found x=—% and y=§ *)
(* Alternatively, we could have just used the solve command *)
Solve[{x + 2y == 1, 4x + 5y = 2}, {x, y}]

1 2

H’H*g' Y*g}}

(» Again, symbolic expressions are fine... suppose the right hand sides were q and w #)

Solve[{x + 2y ==q, 4x + 5y = w}, {x, y}]

{{xe% (-5q+2w), ye% (4q-w)}}

(* We can find the eigenvalues and eigenvectors of matrices =x)
(* There's multiple ways to do this =)

(# First: From the definition. We recall the
eigenvalues of b are the roots of Det[b-A IdentityMatrix[2]] =*)

Det[b - A IdentityMatrix[2]]
—2-52+ 27

(* Alternatively,
this polynomial is known as the characteristic polynomial of the matrix «)

CharacteristicPolynomial[b, A]
—2-5x+22
(# We can then find when the characteristic polynomial is zero #*)

(» Some polynomials factor nicely. =*)

F‘actor[)t2 -3+ 2]

(=2 +2) (-1+2)

(* Ours, however, does not %)
Factor[-2-52+2%]

-2-52+2%

(* That's okay though. We can solve for when the characteristic polynomial equals zero. x)

Solve[-2-51+2% =0, 1]

(=3 (s3]} o L [s0v3)))

2

(* Thus the eigenvalues of b are % (51V33) *)
(* If you only want to know the eigenvalues, just use: =)

Eigenvalues[b]

5 39))

1
2

(* To find just the eigenvectors,

Mathematica Linear Intro.nb | 5

use: (again, due to the way mathematica works, you probably want to take the transpose.)

Here the eigenvectors are [

1 1

Transpose[Eigenvectors[b]] // MatrixForm

e (sevEE) bl (s-vE3]

1 1

(* We can check by multiplying the matrix by the

vector and comparing it to the eigenvalue times the vector =)

1

b. (—§-+% (5+‘V7E;)

== i(5+,\/§) {-§+%(5+'\/§)
2 1

True

(* Alternatively,

-§+% (5+NF;;)] and [-§+% (5- 33)

use Eigensystem to find both eigenvalues and eigenvectors at the same time)

{evals, evecs} = Eigensystem[b];
(* The 2nd eigenvalue is: *)

evals[[2]]

N |

(57\/33)
(» and it has corresponding eigenvector)
evecs[[2]] // MatrixForm

7§+§(57\/¥)

1

(* Remember the determinant of a matrix is the product of the eigenvalues x*)

Det[b]

-2

6

Mathematica Linear Intro.nb

evals[[1]] xevals[[2]]

335 (353

|

(*» They don't look the same, do they? We're going to have to simplify. *)
FullSimplify[evals[[1]] *xevals[[2]]]

-2

(*» This is the same as the determinant %)

(*» The trace of b, the sum of the diagonal entries, is bj;+bjy; *)

Tr[b]

5

b[[1, 1]] +b[[2, 2]]

5

(* The trace is also the sum of the eigenvalues *)

FullSimplify[evals[[1]] +evals[[2]]]

5
(* To do Gram-Schmidt, use orthogonalize x)

orthogonalize[{{1, 2, 3, 0}, {4, 2, 1, 0}, {3, 1, 2, 1}}]
1 [2 3 45 [2 19
{{ 14 o 14 0}! { ’ 3 r - ’ 0}!
V14 7 14 V2422 1211 V2422

2 |
26 3287 143 2 38
{ r 13 - 1
74 3287

173
38
: i

3 3+/65
(*# That is, the vectors 1 , 2 ,L,O ’ (a5 '3 '\/L ,—L,O),
V1a T V1 V2422 1211 V2422

etc... are orthogonal vectors, i.e. the dotproduct of any two is zero,

with the same span as the original vectors (1,2,3,0), (4,2,1,0) and (3,1,2,1).

(*# OR decomposition of b gives a matrix Q with orthogonal
columns and an upper triangular matrix R such that Q.R=b. As before,
we need to transpose the Q mathematica gives. *)

{9, R} = ORDecomposition[b]; QO = Transpose[Q];

Q // MatrixForm

1 3

vio Vio

1

Vio 1o

w

*)

Mathematica Linear Intro.nb | 7

R // MatrixForm

0.R // MatrixForm
.y
3 4
(#* Q is an orthogonal matrix if and only if Transpose[Q]==Inverse[Q].
Let's check that Q is orthogonal. =*)
Transpose[Q] == Inverse[Q]

True

(*» Recall that the determinant of an orthogonal matrix is
tl. Be careful: the converse is false. %)

Det [Q]

-1

(*» For any nonsingular matrix A, there exists matrices P, L and U such that P.A=L.U,
where P is a permutation matrix (think row interchanges),

L is lower triangular with ones on the diagonal and U is upper
triangular. Mathematica returns the lower part of L in the same matrix as U. *)

{mLU, pivots, conditionNum} = LUDecomposition[b]; mLU = Transpose[mLU] ;

mLU // MatrixForm

(2 %)

. 10 1 3
(» That is, L=() and U=[). Let's check. *)
2 1 0o -2

10 1 3 .
().() // MatrixForm
2 1 0o -2

2)
2 4
(* So L.U is b, up to permutation of rows. =*)

(* The singular value decomposition decomposes an m x n matrix A into
A=U.D.Transpose[V],

where U and V are orthogonal (unitary in the complex case) and

d is diagonal. The diagonal entries of d are called the singular values of A.)

{u, d, v} = SingularValueDecomposition[b];

8 | Mathematica Linear Intro.nb

FullSimplify[u] // MatrixForm
5 1 5
- =+
\/ V221 JZ 221
5 1 5
N I
\/ V221 \/2 221

FullSimplify[d] // MatrixForm

N

N

15++v 221 0
0 15-+v221

FullSimplify[v] // MatrixForm
r__ 5 _ i, 5
2 24221 2 av2z21
1 5
1.5
\/ 2 24221 \/

(* The product u.d.Transpose[v] is the original matrix =)

5
2+ 221

N

FullSimplify[u.d.Transpose[v]] // MatrixForm

5 o)

