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ABSTRACT

The working memory system provides the short-term storage facility necessary

to perform complex cognitive tasks. The prefrontal cortex (PFC) plays a key role;

neurons in the PFC respond to stimuli and continue to maintain elevated persistent

activity after the stimulus is removed. Working memory degradation is a common

symptom in neurological disease.

I propose that working memory performance is driven by interactions of excitatory

and inhibitory neurons and modulated by calcium dynamics. In contrast to previous

models that require a carefully constructed or adapting network architecture, this

model retains novel stimuli using a fixed network of neurons connected with prob-

abilities only depending on the cell type. Persistent activity is irregular, with the

coefficient of variation of the interspike intervals exceeding 0.5. Patterns are robustly

maintained even in the presence of distracting stimuli, yet the network switches to

new, strongly presented “urgent” patterns. The field potential of the excitatory cells

exhibits a gamma rhythm. Statistical properties of the network and the role of key

parameters are considered.

I consider the role of subcellular calcium and how the chemical dynamics are

affected by electrical activity and dendritic geometry. The role of chemical and elec-

trical feedback is examined, and I conclude with a description of the novel features

of a custom simulation tool I wrote to perform this study.
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CHAPTER 1

INTRODUCTION

The working memory system endows the brain with the ability to temporarily

store and manipulate information needed for the performance of complex cognitive

tasks [Baddeley 94]. It has been suggested that the pattern of activity in this sys-

tem indicates a choice of what neural pathways should be active [Miller 01]. This

mechanism is impaired in numerous neurological diseases, including Alzheimer’s

disease [Baddeley 91, Kensinger 03], multiple sclerosis [D’Esposito 96, Grigsby 94,

Pelosi 97], Parkinson’s disease [Gabrieli 96, Kensinger 03, Owen 97], and schizophre-

nia [Driesen 08, Silver 03, Tanaka 06].

A functioning working memory system must be able to remember novel stimuli.

It should be robust to distractors – that is, presentation of a second stimulus should

not necessarily disrupt the original memory – but it should be flexible and able to

switch to remembering a new pattern when necessary [Miller 01].

The prefrontal cortex (PFC) appears to contain the seat of the working mem-

ory system [Curtis 03, Fuster 73, Jonides 93, Lewinsohn 72, Petrides 95], although

other brain regions have also been implicated in the performance of working mem-

ory tasks [Constantinidis 96, Miller 96, Quintana 99]. The PFC is highly connected

[Fuster 08, Miller 01] and responds to both sensory and cortical input. When a cue

stimulus of whatever modality is presented to initiate a working memory task, neu-

rons within the PFC respond with elevated activity that persists after the stimulus is
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removed [Funahashi 94]. The activity is presumably a consequence of the interaction

of pyramidal cells and inhibitory interneurons, two dominant classes of neurons in the

PFC [Gabbott 05, Mountcastle 69, Wilson 94], and it is believed that this activity en-

codes a memory [Curtis 03, Goldman-Rakic 95]. Several mathematical models have

been proposed to explain this persistent activity, although they are typically driven

by one of two phenomenon: recurrent excitation or intrinsic cellular bistability.

In the recurrent excitation based models, pyramidal cells coding for a particular

pattern are connected together via excitatory synapses formed by a Hebb-like learning

rule [Hebb 49], commonly summarized as “neurons that fire together wire together”

[Buzsák 98, Keysers 04, Lakoff 08]. Some models are able to retain novel patterns by

using an attractor network that dynamically adjusts synaptic connectivity during a

working memory task [Amit 97, Hopfield 82], but it is not clear that synaptic rewiring

works on a sufficiently fast timescale [Durstewitz 00, Zucker 02]. A careful balance

of inhibitory input is required to prevent runaway excitation while still permitting a

low level of background activity [Barbieri 08].

In the models driven by cellular bistability, pyramidal cells fire at a low rate in

the off state and at a high rate in the on state. This firing rate bistability has been

experimentally demonstrated in isolated neurons [Egorov 02]. Many of these mod-

els [Fall 05, Guigon 95] incorporate special network architecture, such as so-called

“Mexican-hat” connectivity where nearby neurons are coupled with excitatory con-

nections and far-away neurons are coupled with inhibitory connections. This architec-

ture helps the models to be robust to distractors and noise and is a common modeling

assumption [Camperi 98, Oster 06, Somers 95]. It requires that active cells be phys-

ically located near each other, so these models are typically presented as encoding

spatial location.

I present a new type of working memory model: a Hodgkin-Huxley-type

2



[Hodgkin 52] channel-based model driven by excitatory-inhibitory interactions mod-

ulated by calcium dynamics. Like the cellular bistable models, the neuron’s state

– represented here by its cytosolic calcium concentration – modulates its activity.

Like the attractor networks, my model is able to retain novel patterns, but it does so

without requiring modifications to the network architecture.

Persistent activity in the model’s pyramidal cells is driven by inhibitory input. A

calcium-modulated sag current [Hagiwara 89, Lirk 08, Pan 03, Schwindt 92] – that

is, a depolarizing current that is activated in response to inhibition – controls the re-

sponse of the excitatory cells to inhibitory input. Cells with high calcium respond to

inhibition by becoming more likely to fire an action potential; cells with low calcium

respond by becoming less likely to fire. Each action potential admits calcium, thereby

making subsequent action potentials more likely. Since inhibition increases with net-

work activity, distracting patterns of the same strength as the initial cue are unable

to trigger persistent activity. Strongly presented distractors trigger extra inhibition,

which shuts down the original pattern, and allows the new pattern to activate.

I consider the implications of this model on both the single cell and network level.

The model is robust; it maintains persistent activity corresponding to a randomly cho-

sen cue pattern for a wide range of connectivity patterns. It exhibits a gamma rhythm

– a strong signal in the 30 - 80 Hz range – during persistent activity, which is ob-

served experimentally during working memory tasks [Pesaran 00, Tallon-Baudry 98]

and known to be disrupted in schizophrenia [Spencer 03]. Dopamine modulation of

GABAA conductances is considered and shown to lead to an inverted U-shaped per-

formance curve, consistent with [Vijayraghavan 07, Zahrt 97]. I present evidence that

dendritic geometry may affect intracellular calcium dynamics and thereby working

memory. Finally, I consider the role of feedback from the rest of the brain.
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Since calcium plays a key role in this model, I consider a more detailed spa-

tially extended model of intracellular dynamics based on an extension to the classic

model of Li and Rinzel [Li 94] by Wagner et al [Wagner 04]. I consider the role of

back-propagating action potentials (BPAPs) in triggering calcium waves, and then I

use a scalar bistable equation to consider the effects of dendritic geometry on wave

propagation.

To facilitate this study of random networks of heterogeneous neurons, I developed

a custom software package called snnet. Except where otherwise noted, all simulations

were specified using the snnet framework, which then automatically integrated them

in XPPAUT [Ermentrout 02] using the “qualrk” method, an adaptive Runge-Kutta

integrator.
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CHAPTER 2

BACKGROUND

The human brain serves as the seat of consciousness and is responsible for processing

sensory input and regulating behavior. Disorders of the brain, like schizophrenia or

Parkinson’s disease, can substantially affect quality of life. Since the brain plays such

a key role, researchers from a wide range of fields – including but by no means limited

to biology, computer science, mathematics, medicine, and psychology – study it to

understand how it works and what causes it to fail.

2.1 Neural Biology

Structurally, as with all other organs, the brain is composed of a collection of cells. A

cell consists of a distinct finite volume enclosed by a plasma membrane. The specific

volume may change over time, but as long as the cell is alive, it will always be bounded

by a membrane. Diffusion across the membrane is restricted, allowing the inside of

the cell to be chemically distinct from the outside of the cell. This distinction applies

not just to large organic molecules like DNA but also to charged ions like sodium

(Na+), potassium (K+), calcium (Ca2+), and chloride (Cl−). These local variations

play a key role in brain function.

Approximately 86.1 ± 8.1 billion of the cells of a human brain are classified as

neurons, described below; the remaining 84.6 ± 9.8 billion cells are primarily glial
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cells [Azevedo 09]. Originally viewed as structural elements, glia are now recognized

as having an active role in modulating neuronal activity; see [Araque 99] for a review.

Nonetheless, the following focuses solely on the role of neurons. Most of the material

in this section can be found in any standard introductory neuroscience text, such as

[Kandel 00].

2.1.1 Action Potentials

At the simplest level, a neuron is an electrically excitable cell. When presented with

sufficient electrical input, neurons respond with an action potential, a short term

electrical spike. This spike manifests itself as a change in the electrical potential

across the plasma membrane caused by a change in ionic concentrations inside and

outside the neuron. Since matter is neither created nor destroyed, these changes

occur because ions are selectively permitted to pass through openings or channels in

the membrane.

At rest, a neuron contains a higher concentration of potassium and a lower con-

centration of sodium and calcium than the extracellular medium. When an action

potential is initiated, the activation gate on certain sodium channels opens, allowing

sodium to enter the cell. Sodium enters rather than leaves because of both the con-

centration gradient (around 440 mM in the extracellular space vs only 50 mM in the

cytosol for the squid giant axon [Kandel 00]) and because of the potential gradient.

As the membrane potential rises, the potential gradient reverses, but sodium ions

continue to enter until the two forces cancel each other out at a membrane potential

of around 55 mV [Kandel 00].

As the membrane potential rises, the probability of sodium channel inactivation

gates closing increases, thus stopping the flow of sodium ions. Simultaneously, the
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probability of potassium channels being open increases with the membrane potential,

leading to potassium flow out of the neuron thereby lowering its membrane potential.

The net effect is that sodium channels activate when the membrane potential

is sufficiently elevated, thereby raising the membrane potential, causing the sodium

channels to inactivate and potassium channels to activate, ultimately restoring the

potential to its original value. A sodium-potassium exchanger restores the chemical

concentrations [Skou 65, Dahl 74], however the actual number of ions moved is small

relative to the total and is typically ignored in modeling studies.

Once the membrane potential is lowered, the sodium inactivation gate opens and

the potassium activation gate slows, resetting the neuron to its initial state. This

resetting process takes time, and until it is mostly complete, the neuron is in a

refractory state where it will typically not respond to external stimuli.

Depending on the type of neuron, other channels may be present as well. Hip-

pocampal interneurons and pyramidal neurons both have voltage gated calcium

channels [Rozsa 04, Takahashi 89]. Unlike sodium and potassium, which are main-

tained at concentrations of around 50 and 400 mM, respectively, cytosolic calcium

is maintained at a concentration of around 0.3 µM [Lodish 00]. This baseline is

low enough that the activation of voltage gated calcium channels makes a measur-

able difference in cytosolic calcium concentration [Miyakawa 92]. Both hippocam-

pal interneurons and pyramidal neurons have calcium-activated potassium channels

[Aoki 00, Lancaster 86, Wilson 06] that respond to these fluctuations. Pyramidal

neurons also have sag currents [Magee 98], which are currents that activate when the

membrane potential is below its rest state and act to raise it. In some cell types,

sag currents are known to be modulated by calcium [Hagiwara 89], and it has been

proposed that this modulation also occurs in pyramidal cells [Winograd 08].

Ion channels are not uniformly distributed across a neuron’s membrane. Neurons
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Figure 2.1: Reconstructed CA1 pyramidal neuron morphology. Data from ModelDB
entry for [Poirazi 03]. Custom renderer.

have a complicated geometry, as illustrated in Figure 2.1, but can be divided into

three major functionally-distinct components: an axon, dendrites, and a soma. Each

of these parts contain other structures; a schematic is given in Figure 2.2. The soma

is the large cell body; the axon and the dendrites are connected to it. Dendrites

primarily receive input. The sodium and potassium dynamics described above pri-

marily occur along the axon, however in some cells – including pyramidal cells – the

dendrites also contain voltage gated ion channels and are thus capable of supporting

back-propagating action potentials [Johnston 96].

Even along the axon, variations exist. Membrane potential and channel activation
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Figure 2.2: Schematic diagram of a neuron, showing dendrites, axon, synapses,
and the ER. Image from the public domain, downloaded from
commons.wikimedia.org/wiki/File:Complete neuron cell diagram en.svg.
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are local phenomena. Action potentials typically originate on the axon initial segment

(AIS), a region of axon with high sodium channel concentration and therefore more

susceptible to having sufficient sodium flow to trigger an action potential [Kole 08].

As the local membrane potential rises, electrical charge diffuses to neighboring

regions of the axon. Regions further out on the axon respond to the elevated poten-

tial by activating their sodium channels, thereby raising their local potential, thus

propagating the wave. Regions closer to the soma will not have fully reset and thus

do not respond to this charge diffusion. Note that propagation along an axon takes

time and thereby introduces a delay.

2.1.2 Synapses

Neurons signal their activity to other neurons at synapses, specialized regions where

the axon of the transmitting, or presynaptic, cell has grown close to a receiving, or

postsynaptic, neuron. Many synapses are from axons to dendrites, although some,

especially inhibitory, are from axons to the soma [Delaney 01]. Synapses whose acti-

vation leads to an increase in the post-synaptic cell’s membrane potential are called

excitatory, while those whose activation decreases the post-synaptic cell’s membrane

potential are called inhibitory.

Each synapse contains a number of synaptic vesicles laden with neurotransmitters,

like glutamate (used in some excitatory synapses) and γ-aminobutyric acid (GABA)

(used in some inhibitory synapses). When an action potential in the presynaptic

cell reaches a synapse, it triggers release of neurotransmitters into the synaptic cleft,

the small gap between the cells. The neurotransmitters bind with receptors on the

postsynaptic cell.

In some receptors, known as ionotropic receptors, this binding directly causes ion

channels to open, creating a postsynaptic potential, a variation in the membrane
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potential. The postsynaptic potentials diffuse throughout the postsynaptic cell, com-

bining in a nonlinear way, ultimately leading to changes in the membrane potential

near the axon initial segment, potentially triggering an action potential.

Other receptors, known as metabotropic receptors, respond to bound neurotrans-

mitter by initiating an intracellular chemical cascade. This is a slower process than

opening ion channels and typically leads to longer lasting changes in neuron behavior.

The density of receptors governs the strength of the postsynaptic potential and

therefore the likelihood that the post-synaptic cell will fire an action potential. This

density is not fixed; in some synapses it can change with a time constant of 100 ms

[Zucker 02]. Over time, neurons may form new connections or destroy old synapses.

2.1.3 Irregularity

Biological neurons fire neither regularly nor synchronously. As Stevens and Zador put

it, “cortical neurons in the waking brain fire highly irregular spike trains that have

more in common with the ticking of a Geiger counter than of a clock” [Stevens 98].

This irregularity has important theoretical and medical implications. Informa-

tion theory [Rieke 99, Shannon 48] defines a concept of signal entropy. In essence,

irregular desynchronized signals can encode more information. A neuron that always

either fires regularly at 3 Hz or regularly at 15 Hz only encodes one bit of informa-

tion: whether or not it is firing at the high rate. If 30 additional neurons always fire

synchronously with that initial neuron, their output provides no additional informa-

tion; the full state of the system could be determined by observing the first neuron.

Medically, excessive synchrony of neurons is associated with diseases of the brain, like

Parkinson’s [Goldberg 02, Hurtado 99, Levy 00, Raz 96].

The coefficient of variation (CV) of the interspike intervals – the ratio of the

standard deviation to the mean – is one measure of the irregularity of a network.
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If the firing times were distributed according to a Poisson process, the interspike

intervals would have an exponential distribution, which has a coefficient of variation

of 1, which is approximately the observed rate in the prefrontal cortex [Compte 03].

2.1.4 Calcium Waves

Metabotropic glutamate (mGlu) receptors – metabotropic receptors that respond

to glutamate – are especially relevant to the current study, because the activation

of certain types of mGlu receptors is associated with changes in internal calcium

concentration. Fall et al proposed that this process plays a role in cellular bistability

in the working memory system [Fall 06].

Like membrane potential and neurotransmitters, elevated calcium can open cer-

tain classes of ion channels on the cell membrane. In addition, calcium serves as a

second messenger signal in most types of cells, with roles from the moment of fertil-

ization [Busa 85] to regulating gene expression [West 01] to cell death by apoptosis

[Orrenius 03]. As such, a typical cell possesses a number of means to regulate its

cytosolic calcium concentration, including buffers [Stern 92] and sequestering by the

mitochondria [Gunter 04] or endoplasmic reticulum (ER) [Pozzo-Miller 97]. These

control mechanisms are present and used in neurons as well [Berridge 98], with the ad-

dition that in neurons, sequestering may be modulated by activity [Pozzo-Miller 97].

The activation of certain mGlu receptors initiates a sequence of events wherein

phospholipase C cleaves PtdIns(4, 5)P
2
, a phospholipid embedded in the plasma mem-

brane, into InsP3 and diacylglycerol. The InsP3 then diffuses into the cytosol, the

fluid in the cell interior. Some of the InsP3 binds to receptors on the ER that trigger

it to release some of its calcium store into the cytosol. This calcium then diffuses

through the cytosol.

The same receptor on the ER that triggered the calcium release is also activated
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by calcium. Thus as the calcium diffuses through the dendrite, it may bind to other

receptors, triggering further local elevations in calcium concentration. This process

can lead to a region of elevated calcium concentration spreading throughout a portion

of the dendritic tree [Jaffe 94, Ross 05].

The receptor actually contains a second calcium binding site, where the binding

and unbinding happens at a slower rate. When calcium is bound to this site, the

corresponding ion channel on the ER membrane closes. SERCA pumps then extract

calcium from the cytosol, resequestering it in the ER.

2.2 Neural Modeling

Confronted with a permanent state of having imperfect knowledge, as a species, we

cope by abstracting literally everything we encounter. No two pieces of paper are

truly identical; they will be composed of different numbers of atoms, and yet we

routinely think of an abstract concept – a mental model – that we call a piece of

paper. This mental model lets us predict the behavior of a specific piece of paper to

a large degree of accuracy, but it is, out of necessity, an incomplete representation

of reality. As George E. P. Box explained, “models, of course, are never true, but

fortunately it is only necessary that they be useful” [Box 79].

Experimental biologists sometimes work with animal models for human systems.

For example, a rat may be altered in such a way that it exhibits symptoms of

schizophrenia [Häfner 91, Sams-Dodd 96]. The altered rats then serve as an ani-

mal model for the disease and can be studied to understand possible causes and

treatments.

More abstractly, models need not have a physical manifestation. A purely abstract

model is a set of (possibly probabilistic) rules governing the approximate behavior
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of the system. These models may then be studied using mathematics, which can be

viewed as the logical study of the implications of an arbitrary rule set.

In principle, depending on the problem, the rules for mathematical models may

be expressed in the language of any branch of mathematics. Polynomials over finite

fields have been used to study gene regulatory networks [Laubenbacher 04]. Cellular

automata are a common tool in modeling biological systems [Ermentrout 93]. This

study uses differential equation based models, another common technique.

2.2.1 Differential Equations

The field of differential equations is the branch of mathematics that studies how states

change, be it over time, space, or both. All of the differential equations in this study

can be written in one of two forms:

du

dt
= f(· · · ) (2.2.1)

or

∂u

∂t
= D∆u+ f(· · · ), (2.2.2)

where D is a constant or constant diagonal matrix and f(· · · ) is some function of

time and the modeled state variables, the vector u.

Equation (2.2.1) is a type of ordinary differential equation. By definition,
du

dt
is the

instantaneous rate of change of the state variable u as time t changes. Instantaneous

here is in the sense that while a car may average a certain velocity over a trip, at

every point in time, it is traveling at a specific instantaneous velocity estimated and

displayed on the speedometer. Thus (2.2.1) states that the state variable changes at

a rate described by the function f.

Equation (2.2.2) is a reaction-diffusion equation. Analogously to the above,
∂u

∂t
is the instantaneous rate of change of u over time t, however here u is distributed
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throughout space and has different values at different locations. The function f is

the reaction term; it describes the contributions of local dynamics to the variable’s

change. The term D∆u is the diffusion term, where ∆ is the Laplacian operator.

The proof that this term corresponds to the contribution from diffusion is given in

Appendix D, but for now note that D is proportional to the rate of diffusion.

For example, the calcium waves of Section 2.1.4 will be modeled using reaction-

diffusion equations, because cytosolic calcium changes over time, is at different con-

centrations at different locations, diffuses throughout space, but also has local dy-

namics where SERCA pumps and InsP3 receptors respond to the local chemical con-

centrations.

Numerically Solving Differential Equations

While techniques exist for analytically solving certain differential equations, there

is no general technique. Furthermore, there cannot be a general technique because

many differential equations do not have a solution that can be expressed in terms of

elementary functions. Even in equations that cannot be solved exactly, there are often

analytic or geometric techniques for extracting some information about the dynamics

from the equations; see [Strogatz 94] for an introduction.

While explicit analytic solutions often cannot be found, it is still possible to com-

pute solutions to (2.2.1) and (2.2.2) numerically. Here I present a simple technique

known as Euler’s method for approximating solutions of the form (2.2.1), introduced

in many introductory differential equations texts (e.g. [Boyce 92, Nagle 00]). The

Crank-Nicolson method [Crank 47] is a related but more complicated technique suit-

able for numerically solving the reaction-diffusion equation (2.2.2).

Suppose the value of the state variables is known at time t0. Pick additional times

ti, i = 1, 2, . . . , with ti−1 < ti. The state variables will be estimated at these times.
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The method produces the least error if the difference between consecutive time points,

known as the time step, is small.

The primary observation behind Euler’s method is that the instantaneous rate of

change is approximately equal to the average rate of change. Thus we approximate
du

dt
= f(t, u) as

u(ti+1)− u(ti)

ti+1 − ti
= f(ti+1, u(ti)). (2.2.3)

Rearranging terms, we find

u(ti+1) = u(ti) + f(ti+1, u(ti)) (ti+1 − ti) (2.2.4)

When i = 0, (2.2.4) becomes

u(t1) = u(t0) + f(t1, u(t0)) (t1 − t0). (2.2.5)

Note that everything on the right hand side of (2.2.5) is known. Thus u(t1) is known.

Similarly plugging in i = 1 to (2.2.4) and using the value for u(t1) just found, we find

a value for u(t2). Continuing in this manner, we find values for the state variable u

at all time points.

If the model has more than one differential equation, then Euler’s method requires

updating each state variable at each time point in the same manner as above.

While it is an intuitive strategy, Euler’s method is impractical because it requires

very small time steps to get good results, and because it is potentially numerically un-

stable. Thus, for the network simulations, I use an adaptive Runge-Kutta algorithm

instead. Runge-Kutta algorithms are more complicated, but they have the advan-

tage that they can produce good results using much larger time steps than Euler’s

method. Adaptive here means the algorithm chooses the step size at each step based

on estimates of the error. This allows the use of large time steps when the network

is being quiet, further reducing computational load.
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2.2.2 Types of Neuron Models

There are several categories of differential equation based models for neuronal activity.

Firing rate models, perhaps the most abstract, are common (e.g. [Fall 05], [Fall 06],

[Tanaka 06], [Verduzco-Flores 09]). These models calculate the average firing rate of

a neuron but do not attempt to capture individual action potential events. Integrate

and fire models (e.g. [Brunel 01]) consider the dynamics of a cell up until a certain

event occurs, interpreted to indicate that the cell will then fire an action potential.

The action potential is assumed to happen instantaneously, and the neuron’s state

variables are returned to rest. Unlike firing rate models, integrate and fire models

give specific times for action potentials, so irregularity can be studied, but they still

do not model the time course of the action potential itself.

This study instead uses a third type of model, one based on a Hodgkin-Huxley-

type formalism. This class of models offers a strong correspondence to the biology,

because it explicitly considers the probabilities that ion channels are open or closed,

and because it offers full time courses for all the state variables.

2.2.3 Hodgkin-Huxley Model

The classic 1952 model [Hodgkin 52] of action potentials in the squid giant axon by

Alan Lloyd Hodgkin and Andrew Huxley forms the basis of my model. The notation

that follows is not their own, but the equations are equivalent. Their model considered

the effect of two specific types of ion channels – sodium and potassium – as well as

a third, general channel, dubbed “leak.” The change in membrane potential v is a

result of the summed ionic currents, Iion, and any applied current Iapp :

Cm
dv

dt
= −INa − IK − I� + Iapp, (2.2.6)
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where the signs follow the standard convention in the literature that positive ionic cur-

rent (INa, IK, and I�) decreases the cell’s membrane potential, while positive applied

current Iapp increases the potential. Here INa = gNa m
3 h (v−vNa), IK = gK n4 (v−vK),

and I� = g� (v − v�) are the ionic currents flowing through sodium, potassium, and

leak channels, respectively. Other channel types besides sodium and potassium are

present in a cell; the leak current offers an approximation of their combined effects.

The variables m, h, and n are gating variables, representing the proportion of

sodium activation, sodium inactivation, and potassium activation gates, respectively,

on the ion channels that are open. Each gating variable is governed by an equation

of the form

dx

dt
=

x∞(v)− x

τx(v)
, (2.2.7)

where each instance of x is either m, h, or n. This equation implies that for a given

gating variable x, the probability that the corresponding gate will be open tends to a

level x∞(v), depending on the membrane potential in an exponential way with time

constant τx(v), also depending on the membrane potential. The full set of equations

and parameter values are listed in Appendix A.1.

An action potential may be triggered in the Hodgkin-Huxley model by either a

brief depolarizing current – that is, a current that raises the membrane potential –

or following release from a longer hyperpolarizing current. This last phenomenon is

known as post-inhibitory rebound. Figure 2.3 shows an example of each type.

2.2.4 Simplifications

Unfortunately, the four state variables of the Hodgkin-Huxley equations are still

too complex for study by certain mathematical tools, such as phase-plane analy-

sis [Strogatz 94]. Many simplified models were developed from the Hodgkin-Huxley

framework, including [Abbott 90, Borg-Graham 87, Rinzel 85].
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Figure 2.3: Action potentials (black) in the Hodgkin-Huxley model triggered by ex-
citation (A) and by post-inhibitory rebound (B). The red lines indicate
relative change in applied current.

Rinzel noted that sodium activation m was the fastest gate, so its dynamics could

be replaced with its quasi-steady-state approximation m = m∞(v). Furthermore, he

noted that sodium inactivation probability n and potassium activation probability

h share an approximately linear relationship, as illustrated in Figure 2.4 [Rinzel 85].

Thus the differential equation for h may be replaced with a linear algebraic equation.

Rinzel used the line of best fit [Rinzel 85], but even h = 1−n preserves the qualitative

behavior and keeps the gating variables bound between 0 and 1.

Only two state variables remain in the model: v and n. The sodium current

equation is now INa = gNa (m∞(v))3 (1− n) (v − vNa). It is a standard result that no

autonomous (time invariant) one-dimensional differential equation model can exhibit

non-monotonic behavior [Strogatz 94], so a two-state model is the simplest possible

form.
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Figure 2.4: Sodium inactivation and potassium activation probabilities obey a nearly
linear relationship in the Hodgkin-Huxley model. The dotted line is the
line of best fit, h = −1.1901n+ 0.9720.

Borg-Graham observed that the carefully fit functions for channel opening and

closing chosen by Hodgkin and Huxley are not essential to the qualitative behavior.

Instead, each limiting value could be defined as x∞(v) = Γ(v; θx, σx), where x is

replaced by each gating variable, which in this case is only n. Here

Γ(v; θ, σ) =
1

1 + exp (− (v − θ) /σ)
, (2.2.8)

a sigmoidal function. Note that for positive σ, if v � θ then Γ will be near 1.

Conversely, if v � θ, then Γ will be near 0. The magnitude of σ determines the

steepness of the transition. Finally, if v = θ, then γ =
1

2
; that is, θ is the half-

activation potential.

Figure 2.5 compares the Hodgkin-Huxley model with the simplified model de-

scribed here, whose full equations are listed in Appendix A.2.
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2.2.5 Synapses

Synapses are places where two neurons communicate. In the case of chemical

synapses, this communication is one-way, with the postsynaptic cell receiving in-

put from the presynaptic cell. Since two cells are involved, in this Section instead of

writing v for membrane potential, vpost will represent the membrane potential of the

postsynaptic cell and vpre will represent the membrane potential of the presynaptic

cell.

In the simplest case, an ionotropic synapse, synaptic transmission works by open-

ing an ion channel in the post-synaptic cell. These channels are modeled identically

to any other gated ion channel [Destexhe 94b], namely

Isyn = gsyn s (vpost − vsyn), (2.2.9)

where s denotes the extent to which the channel is open, which depends on the

amount of neurotransmitter released by the presynaptic cell. When multiple synapses

are present, the total synaptic current is the sum of terms of the form (2.2.9), one for

each synapse.

It remains for the presynaptic cell to specify the channel-open probability. One

typical model [Destexhe 94b] is to suppose that the synaptic gate open probabil-

ity exponentially tends toward 1 when the presynaptic cell’s membrane potential is

elevated, then exponentially decays to 0. Mathematically, this is expressed by

ds

dt
= α (1− s) s∞ − β s, (2.2.10)

where α and β are constants and s∞(vpre) = Γ(vpre; θsyn, σsyn). Delays due to signal

propagation down an axon can be explicitly incorporated into the model without

modeling the spatial extent of the axon; simply replace s in (2.2.9) with s(t− τdelay),

the value of s at a time τdelay before the current time.
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2.2.6 Calcium Waves

ER-based calcium dynamics were first modeled by De Young and Keizer in 1992

[De Young 92]. Since the InsP3 receptor has three binding sites, each one of which

is either bound to a molecule or not, it has 23 = 8 possible states, and their model

considered the proportion of InsP3 receptors in each of these states. Note that this

only requires seven state variables, since the total probability is always 1.

As with the Hodgkin-Huxley equations, Rinzel – this time working with Li –

showed by a time-scale analysis that the qualitative dynamics could be preserved

by simply considering the slow calcium inactivation binding site state [Li 94]. Their

work formed the basis of much subsequent work in intracellular calcium dynamics

[Fall 06, Fall 04, Hartsfield 05, Peercy 08, Wagner 04]; the model presented here is a

variant of [Wagner 04] that neglects dynamic InsP3 production.

The ER is distributed throughout the cytosol in a connected way, through the

dendrites and even dendritic spines [Harris 94, Spacek 97]. Suppose for a given cell

volume, fe denotes the fraction occupied by the ER, and fc denotes the fraction

occupied by the cytosol. Necessarily fc + fe ≤ 1. The inequality is strict if other

structures are present, such as mitochondria.

Recall that the ER calcium story involved InsP3 receptors and SERCA pumps.

As with the Hodgkin-Huxley equations, combine the net effects of all other channels

on the ER into a leak channel. Denote by JIP3, JSERCA, and Jleak the mass flux per

unit volume due to the InsP3 receptor, SERCA pump, and leak channels. Dividing

the mass flux by the volume fraction gives the change in concentration.

Thus, if Cc and Ce represent the cytosolic and ER calcium concentration, respec-

tively, we have

∂Cc

∂t
= dc ∆Cc +

JIP3 + JSERCA + Jleak
fc

+ cionic (2.2.11)
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∂Ce

∂t
= de ∆Ce −

JIP3 + JSERCA + Jleak
fe

(2.2.12)

where cionic denotes the net flux into the cytosol due to ion channels on the cell

membrane and depends on both space and time. The first terms of the right hand

sides is the contribution from diffusion, as derived in Appendix D.

The form of the fluxes JIP3 and Jleak parallels the forms for ion channels

in the Hodgkin-Huxley equations: JIP3 = vip3r m
3 n3 h3 (Ce − Cc) and Jleak =

vleak (Ce − Cc) . The SERCA pump is a pump not a channel and so has a different

form, modeled with Hill-type dynamics: JSERCA = − vsercaC2

c

k2
serca + C2

c

. More biophysically

detailed models of the SERCA pump have also been developed [Baker 02, Higgins 06].

Here m and n are fast gating variables depending on InsP3 and calcium, respectively.

The final gating variable h is for the slow calcium inactivation gate.

This model supports both bistable and excitable waves. The non-spatial dynam-

ics are illustrated in Figure 2.6. Both types of waves have been observed in the

Xenopus oocyte, which state depending on the oocyte’s development [Fontanilla 98,

Lechleiter 91].

In particular, the model can transition from excitable, to bistable, to monostable

with high calcium concentration by increasing the InsP3 concentration, see Figure

2.7.

2.3 Working Memory

The brain’s short-term storage and processing capabilities are provided by the work-

ing memory system [Baddeley 94]. When a cue signal is presented that needs to be

remembered, some subset of the cells in the prefrontal cortex (PFC) begin to fire

more rapidly and maintain this elevated firing rate after the signal is removed. When

the information is no longer relevant, the memory is discarded. In some experiments
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Figure 2.6: Behaviors of the ER-calcium point model. From left-to-right then top-to-
bottom: excitable, bistable, bistable with unstable limit cycle, one stable
fixed point with an unstable and a stable limit cycle.
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[Funahashi 89, Jonides 93], this entire process occurs over just a few seconds. Pre-

sentation of the same cue again will activate the same cells, while presentation of a

different cue will activate different cells. Thus the pattern of activity corresponds to

the information encoded [Funahashi 89, Funahashi 94].

2.3.1 Biology

Location

Key aspects of the working memory system lie within the PFC, although other brain

regions are also involved [Constantinidis 96, Jonides 93, Miller 96, Quintana 99].

Tests on brain-damaged patients, PET scans on the healthy, and direct electrical

recordings from animals all testify to the PFC’s important role.

Delay tasks have been used to test both human [Lewinsohn 72, Verin 93] and

monkey [Funahashi 89] working memory performance. In these tests, a stimulus is

presented – Lewinsohn et al tested humans using visual, auditory, and kinesthetic

stimuli – and then the subject is asked to identify or reproduce the stimulus after

a short delay (10 seconds in [Lewinsohn 72]). Patients with dorsolateral prefrontal

lesions have a higher error rate than control individuals. Working memory deficits

have also been observed in recency tests of lesion patients, wherein the subject has

been shown a series of pictures or asked to say a series of words and asked to report

which of two options were presented more recently [Milner 82].

Healthy subjects show increased activity in the PFC during the performance of

working memory tasks as measured by positive emission tomography (PET). Jonides

et al tested this by scanning volunteers who were briefly presented with a set of

three spatial locations, waiting three seconds, and then asking them if a specific

location was one of the original three [Jonides 93]. A similar protocol was used in

27



[Petrides 93], and the basic results have been confirmed using functional magnetic

resonance imaging (fMRI) as well [D’Esposito 95].

Funahashi et al trained monkeys to remember the spatial location of a signal

and then look in that direction after a delay. They implanted electrodes in the

monkey PFC to record the electrical activity of individual neurons during this task.

They found that different groups of neurons would activate in response to different

locations, that these neurons would remain active during the delay period, and quickly

deactivate after the task was complete [Funahashi 89].

Architecture and Connectivity

There are two dominant classes of neurons in the PFC: excitatory pyramidal cells and

inhibitory GABAergic interneurons [Gabbott 05, Mountcastle 69, Wilson 94]. The

exact ratios vary by region, but in the rat, typically about 85% of PFC neurons are

pyramidal cells; the remaining 15% are mostly GABAergic interneurons with many

subtypes [Gabbott 05]. Many of these pyramidal cells project to other brain systems;

in the rat about 37% of PFC layer 6 pyramidal cells project to the mediodorsal

thalamus [Gabbott 05]. The PFC is bidirectionally connected to the sensor and

motor cortices. It also transmits to the basal ganglia and receives input from the

thalamus and amygdala [Fuster 08, Miller 01].

Modulation

Local concentrations of the neuromodulator dopamine are known to rise during the

performance of working memory tasks [Watanabe 97]. Experiments have found work-

ing memory performance has an inverted-U-shaped relationship with dopamine; per-

formance is impaired if dopamine is too high or too low [Zahrt 97]. Disregulation of

the dopamine levels [Swerdlow 87] and impairment of working memory performance

[Driesen 08, Gonzalez-Burgos 08, Silver 03] are both associated with schizophrenia.
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2.3.2 Modeling

Many models have been proposed for the maintenance of persistent activity. Many

of these models are based on either recurrent excitation [Brunel 01, Amit 97,

Hopfield 82, Mongillo 08] or cellular bistability [Fall 06, Fall 05, Guigon 95]. Both

approaches are based on experimental observations: recurrent excitatory connec-

tions have been identified within the prefrontal cortex [Kritzer 95, Melchitzky 98],

and intracellular calcium – often considered a measure of recent neuronal activity –

has been shown to modulate a neuron’s electrical response [Fransén 06, Moore 09,

Sidiropoulou 09].

Recurrent excitatory networks rely on some form of synaptic adaptation to

respond to novel stimuli. Traditionally this adaptation was modeled as long-

term potentiation in the synapses between neurons belonging to the same pattern

[Hopfield 82, Amit 97], but while synaptic facilitation has been observed between

pyramidal cells in the PFC [Wang 06] Short-term synaptic plasticity occurs with a

time constant of around 100 ms [Zucker 02], so it is not clear if this mechanism is fast

enough to support novel patterns in working memory. These attractor models con-

verge on a stable network, making them robust to noise. Retained patterns may be

switched by momentarily shutting down the network then introducing a new pattern

[Brunel 01].

More recent work by Mongillo et al [Mongillo 08] suggests that synaptic adap-

tation due to changing calcium concentration at the synapses could be sufficient

to maintain persistent activity. The authors propose that this chemical change is

long lasting, on the order of one second, allowing the network to conserve energy by

briefly stopping persistent activity while still maintaining the pattern encoded in the

synapses.

Other models suppose that the response properties of the cell itself change over
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time. While a traditional Hodgkin-Huxley neuron does not change over time, an

actual biological neuron – a living cell – does change. These models harness this

change to endow the neuron with a “memory” of its own, possibly in the form of a

change in cytosolic calcium concentration [Fall 06]. To provide robustness to noise

and prevent “drift” where the active cells change over time, these models often im-

plement Mexican-hat-like synaptic distributions [Fall 06] whereby nearby cells have

excitatory connections and far away cells have inhibitory connections; they are there-

fore limited to encoding patterns of contiguous groups of cells [Camperi 98, Fall 06].

Some [Guigon 95] also incorporate synaptic plasticity. These models typically do not

consider pattern switching or robustness to a full strength distractor.

While inhibition is expressed with significant power in the PFC [Hasenstaub 05,

Rudolph 07], in the recurrent excitatory models, it often serves primarily to slow down

the excitatory cells [Amit 94, Brunel 01]. They typically require a careful balance of

inhibition and excitation [Barbieri 08].

Both of these approaches have difficulty reproducing the irregular firing patterns

seen in experiment [Barbieri 08]. The coefficient of variation – the ratio of the stan-

dard deviation to the mean – of the interspike intervals of prefrontal cortex neu-

rons during working memory tasks has been measured to be about one [Compte 03],

whereas it tends to be lower in recurrent networks and especially bistable networks

[Barbieri 08]. The model of [Brunel 01], however, achieves a nearly exponential inter-

spike-interval distribution, thanks in part to the balance of inhibition and the strong

noise signal.

In the following chapters, I show that an excitatory-inhibitory network where the

excitatory cells possess a calcium-modulated sag current can form the basis of a robust

working memory system. The only assumptions I make on connectivity are that it is

sufficiently high and that the connection probabilities between cells only depend on

30



their cell types. This model exhibits irregular activity even in the absence of noise

from other brain regions. It maintains persistent activity, is robust to distractors, and

can switch to new patterns for a wide range of connection probabilities; no careful

balancing is required.
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CHAPTER 3

MODEL

I propose a new model, driven by calcium-modulated interactions between excitatory

and inhibitory neurons in the PFC. This structure is motivated by the observations

that inhibitory connections are dominant in the PFC [Hasenstaub 05, Rudolph 07]

and sag currents – currents activated by hyperpolarization – are known to increase

activity in some PFC neurons [Magee 98, Winograd 08] and are themselves possi-

bly modulated by intracellular calcium concentration [Hagiwara 89, Lirk 08, Pan 03,

Schwindt 92]. Recent experiments have examined the link between intracellular cal-

cium concentration and neuronal activity [Moore 09, Sidiropoulou 09] and provided

further evidence of an association.

3.1 Overview

The model consists of two pools of neurons: excitatory cells and inhibitory cells,

interpreted to correspond to pyramidal neurons and GABAergic interneurons, re-

spectively. I seek a minimal model with as few assumptions as possible, so I neglect

variations between the subtypes of each of the two major classes of neurons in the

PFC. Neurons are connected at random with probability based solely on the cell

types involved. While excitatory to excitatory connections are known to be present,

they are not necessary for the basic performance of the model; I propose that they
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Figure 3.1: Schematic diagram of a two-population model for working memory. Con-
nection probabilities are as shown, except where otherwise indicated.

act to improve performance with learned patterns. Most of the simulations involved

networks of 80 excitatory cells and 30 inhibitory cells. This choice of network size is

largely arbitrary, although the excitatory cells are known to be more numerous than

the inhibitory cells in the PFC [Gabbott 05]. The basic working memory behaviors

are robust across a range of network sizes. A schematic for the usual architecture is

shown in Figure 3.1.

Each cell is modeled as a single compartment using the conductance-based

Hodgkin-Huxley formalism [Hodgkin 52]. Delays due to spatial propagation of ac-

tion potentials are modeled using delay-differential equations. Propagation delays

from excitatory to inhibitory synapses are chosen from a normal distribution with

mean 10 ms and standard deviation 3 ms.

Patterns to be retained are presented to the model in the form of an applied
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current to a corresponding subset of the excitatory neurons. The choice of pattern is

in no way linked to the particular network architecture.

The corresponding excitatory cells respond to the applied current by firing rapidly,

thereby elevating their internal calcium concentration. This activity excites the in-

hibitory cells, which then deliver inhibition to all the excitatory cells. In excitatory

neurons with a high level of calcium, the sag current then activates, depolarizing

the cell, potentially raising it above threshold, triggering an action potential, thereby

maintaining persistent activity. The cytosolic calcium in the quiescent cells is in-

sufficient to activate the sag current to a level strong enough to trigger an action

potential, so they remain silent.

3.2 Excitatory Cells

The excitatory cells are modeled similarly to the simplified Hodgkin-Huxley model

introduced in Section 2.2.4, except they contain two additional ion channels: calcium

and sag.

The membrane potential is governed by the equation

Cm
dv

dt
= −(INa + IK + ICa + Ih + I� + Isyn + Inoise) + Iapp, (3.2.1)

where INa = gNa m
3

∞ (1 − n)(v − vNa), IK = gK n4 (v − vK), ICa = gCa y
2

∞ (v − vCa),

Ih = gh mh (v−vh), and I� = g� (v−v�). The choice of name Ih refers to the h-current,

another name for the sag current. The slow gating variables n and mh are governed

by equations of the form given in equation (2.2.7), where x is replaced by n and mh,

respectively. I suppose calcium modulation of the sag current is indirect and works

by modulating the half-activation variable:

θh = θh,min + (θh,max − θh,min)
c2

k2

h
+ c2

, (3.2.2)
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where c represents the concentration of calcium in the cytoplasm. Note that if cal-

cium is high, i.e. c � kh, then θh is near θh,max. That is, the half-activation potential

for sag current is near its highest, therefore making it the easiest to switch on. Con-

versely, if c � kh, then θh will be near θh,min, and the neuron would have to be very

hyperpolarized to activate the sag current. An alternative indirect model, based on

explicit binding reactions, has been proposed in [Winograd 08].

Cytoplasmic calcium, c, increases at a rate proportional to the calcium current

and is cleared by mass-action kinetics, with potential additional contributions cinternal

from the ER and cNMDA from NMDA receptors:

dc

dt
= ε (−ICa − kCa c) + cinternal + cNMDA, (3.2.3)

Recall that for historical reasons the sign convention is such that a negative current is

the flow of positive charge (here calcium cations) into the cell; this convention is the

reason for the initial negative sign in (3.2.3). Since most admitted calcium is quickly

buffered, the change in cytosolic calcium concentration due to fluxes across the cell

membrane is scaled by ε, a small constant.

Excitatory to inhibitory communication is assumed to occur via AMPA synapses,

which decay quickly, with time constant about 2 ms. Excitatory to excitatory

synapses, if any, are assumed to be mediated by NMDA, which has longer lasting

effects [Ermentrout 10].

The full set of equations is listed in Appendix A.3. Initial parameters were chosen

by a Monte Carlo search, as explained in Appendix B.1 and listed in Table A.3.
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3.3 Inhibitory Cells

As with the excitatory cells, the inhibitory cells are modeled based on the simplified

Hodgkin-Huxley model of Section 2.2.4, except these cells contain three additional

currents: calcium ICa, an A current IA, and an AHP current IAHP.

It follows that the membrane potential v is governed by

Cm
dv

dt
= −(INa + IK + ICa + IA + IAHP + I� + Isyn) + Iapp, (3.3.1)

where INa = gNa m
3

∞ (1 − n)(v − vNa), IK = gK n4 (v − vK), ICa = gCa y
2

∞ (v − vCa),

IA = gA a3 b (v − vK), IAHP = gAHP

�
c2

c2 + k2

1

�2

(v − vK), and I� = g� (v − v�). The

slow gating variables a, b, and n are governed by equations of the form (2.2.7), where

x is replaced by a, b, or n, respectively.

Calcium is modeled as in (3.2.3), with cNMDA = cinternal = 0. The A current,

IA, is a slow inactivating potassium current associated with delays [Ermentrout 10,

Storm 88]. The model follows [Connor 71], with some parameter values from

[Golomb 07].

The after-hyperpolarization-current is a potassium current that activates in the

presence of high calcium, thereby hyperpolarizing the cell and reducing the firing rate

[Abel 04]. The model used is an instantaneous variant of [Destexhe 94a]. Note that

if 0 ≤ c � k1, then
c2

c2 + k2

1

will be small, so there will be very little AHP current.

Recall that calcium c is small when the cell has not fired recently. If on the other

hand, c � k1, then
c2

c2 + k2

1

will be near 1, and the AHP current will be near its

maximum strength, exerting a hyperpolarizing influence on the membrane potential,

limiting its firing rate.

Appendix A.4 lists the full set of equations. All inhibitory synapses are assumed

to be mediated by GABAA. A Monte Carlo search, this time based on the combined
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behavior of a group of inhibitory cells, was used to pick the initial parameters, as

explained in Appendix B.2. These parameter values are listed in Table A.4.

3.4 The Rest of the Brain

The working memory system does not exist in isolation; the neurons involved con-

stantly exchange signals with the rest of the brain. As introduced in Section 2.3.1,

the PFC is bidirectionally connected with the sensory systems, receives input from

the thalamus and amygdala, and sends output to the basal ganglia [Fuster 08].

To simulate synaptic input from neurons not being explicitly modeled, I suppose

that they fire according to a Poisson process at some known frequency. Recall that

a Poisson process is a sequence of events where the delays are exponential random

variables. That is, the probability that the inter-event delay X is bigger than ∆t is

P (X > t) = e−λ∆t, (3.4.1)

where λ is the reciprocal of the average delay. Thus if the firing rate f is measured in

Hz and time is measured in milliseconds, the average delay is
1000

f
, so λ =

f

1000
. The

standard deviation and the mean of an exponential random variable are identical, so

these artificial neurons fire with coefficient of variation equal to 1.

If ti denotes the time of the ith spike for a particular non-explicitly modeled

neuron, then the synaptic output for that neuron is modeled according to the form

s(t) =






1 if ti ≤ t < ti + τdelay

exp((ti + τdelay − t)/τdecay) if ti + τdelay ≤ t < ti+1

That is, the synaptic output is 1 for a duration of τdelay, then decays exponentially

with time constant τdecay until the next spike time.

In the case of full network simulations, I consider a pool of 300 background neu-

rons, each firing according to a Poisson process at 5 Hz. Each excitatory cell receives
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input from a random sample of 50 background neurons from the pool. The current

from input from synaptic input from background neurons follows the same form as

all the other synaptic currents, namely

Inoise =
�

i∈presyn noise

gnoise si (v − vnoise). (3.4.2)

The parameters used for noise are as in Table A.6, except where otherwise noted.
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CHAPTER 4

RESULTS

For the full network simulations, I connect 80 excitatory cells to 30 inhibitory cells

using the connection probabilities and parameters as determined in Appendix B.

Patterns are presented to the network in the form of an applied current administered

to a subset of the excitatory cells. An alternate strategy would be to increase the

firing rate of the noise sources that target the neurons belonging to the pattern; this

second approach was used in [Brunel 01].

4.1 Basic Results

Figure 4.1 shows an example multiphase simulation.

During the initial phase – (i) in the Figure – no cue has been presented. The

excitatory cells fire at a low rate driven by background noise from outside the model.

The cells fire infrequently enough that their calcium concentration remains low, so

the response of the inhibitory cells does not trigger persistent activity.

In stage (ii) in the Figure, a cue is presented to the first 30 excitatory cells. The

numbering has no intrinsic meaning in the model; any group of 30 excitatory cells

gives similar results. A contiguous block of cells was chosen solely as a visualization

aid. The extra applied current increases the firing rate of the stimulated cells, causing

their calcium concentrations to increase, as shown in Figure 4.2. This increased firing
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Figure 4.1: Multiphase simulation of the full network, showing baseline activity (i)
and (ix), cue period (ii), persistent activity (iii), (v), and (vii), ignoring
a weak distractor (iv), switching in response to a strong distractor (vi),
and resetting (viii). This simulation included dopamine modulation of
the inhibitory to excitatory synapses.
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Figure 4.2: Sample calcium time course. Each action potential admits calcium, which
is then cleared by a process obeying mass-action dynamics. The shaded
region indicates presentation of a cue stimulus to the cell.
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Figure 4.3: Irregular firing in the full network. (A) shows the distribution of interspike
intervals, (B) the firing rates of individual cells, (C) the coefficient of
variation of ISIs on a per-cell basis, and (D) membrane potential traces
for 10 excitatory cells. A single simulation is shown.

rate drives the inhibitory cells faster, providing more inhibition to the excitatory

cells, suppressing the activity of the non-stimulated neurons. The cue signal was

maintained for 300 ms, which is the same duration used in [Verduzco-Flores 09].

During phase (iii), the cue stimulus is removed. Excitatory cells with elevated cal-

cium concentrations respond to input from inhibitory cells by activating the h-current

thereby firing more action potentials and maintaining elevated calcium levels. This
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Figure 4.4: The local field potential exhibits a gamma rhythm during persistent ac-
tivity. (A) shows a trace of the field potential vs time. (B) shows a
periodogram of the field potential, illustrating the strengths of the com-
ponent frequencies.

persistent activity is not uniform. The time between spikes varies and different neu-

rons fire at different average rates. Nonetheless, an overarching rhythm is preserved,

in the sense that the excitatory cells exhibit dynamic clustering: cells that are not fir-

ing synchronously will occasionally have action potentials at approximately the same

time, see Figure 4.3.

This clustering effect causes the local field potential – here interpreted to be the

average of the excitatory cell membrane potentials – to exhibit a gamma rhythm,

consistent with the experimental observation in [Pesaran 00]. See Figure 4.6.

In phase (iv), a distractor of the same strength as the initial cue is presented to a

different subset of the excitatory cells. The inhibitory cells, however, are now firing

at a higher frequency than they were during the cue period due to the activity in the

rest of the network. This additional inhibitory activity counteracts the distracting

stimulus, preventing it from activating any new cells.
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In phase (v), the distracting cue is removed, and the network continues to maintain

persistent activity corresponding to the initial pattern.

In phase (vi), a new pattern is presented very strongly. This is simulated by

applying a large applied current to the corresponding cells. This applied current is

strong enough to activate the corresponding cells despite the increased inhibitory cell

activity. The inhibitory cells fire more rapidly in response to the increased excitatory

cell activity. This extra inhibition overcomes the sag current and prevents the cells

in the original pattern from firing. By the end of this phase, the strong pattern has

been presented for long enough that the calcium has built up in the new pattern but

decayed in the old.

Once the strong distractor is released – phase (vii) – the network again maintains

persistent activity in the cells with elevated calcium; the main difference from before

is that now a different set of cells has elevated calcium.

In phase (viii) excitatory cell activity is suppressed. This may be done by either

applying a hyperpolarizing applied current directly to the excitatory cells, or by

applying a depolarizing applied current to the inhibitory cells, causing them to fire

more rapidly and again increase the inhibition of the excitatory cells.

In phase (ix), suppression is removed. Assuming the suppression was maintained

long enough, the calcium will have decayed in all of the excitatory cells to the point

where the sag current will not activate, and thus the network returns to its initial

baseline activity.

4.2 Network Size Independence

The basic properties identified in Section 4.1 are scalable to a variety of network sizes.

Figure 4.5 illustrates that networks of various sizes can maintain persistent activity.
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Figure 4.5: The ability to maintain persistent activity is preserved across multiple
network sizes. (A) 30 Excitatory, 30 Inhibitory. (B) 80 Excitatory, 15
Inhibitory. Connection strengths are altered to preserve the total amount
of synaptic input.

These scalings were achieved by altering the synaptic weights to maintain the total

level of synaptic input.

4.3 Pattern Independence

The network architecture supports the retention of arbitrary patterns beyond a cer-

tain size. Randomly chosen patterns are likely to be well retained.

To quantify this, define an active cell as a cell that has fired an action potential

within the past 100 ms, and consider the percentage of pattern cells active over

time. Each of eight pattern sizes was tested against ten randomly chosen networks.

Note that since each network is randomly connected, there is no need to randomly

choose the presented patterns. Simulations were run without external excitatory

input to prevent an inaccurate active count. With the exception of the smallest two
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Figure 4.6: Pattern retention is largely independent of size – beyond a minimum – or
pattern choice. The average percentage of pattern cells active at a given
time t after the removal of cue for randomly chosen patterns of various
sizes on randomly connected networks is shown. n = 10 simulations.
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pattern sizes, on average over eighty percent of each pattern was retained for over

2000 milliseconds.

4.4 Robust to Heterogeneities

No two cells are exactly alike, so I considered the robustness of the model to hetero-

geneous cells, where the impact of excitatory and/or inhibitory connections varied

between each cell. I compared the average performance of each cell over n = 10

simulations as before, except this time conductances were chosen from a normal dis-

tribution with fixed mean and a standard deviation that varied as a percentage of the

mean. Network performance as measured by average fraction of active cells, average

firing rates, and average coefficient of variation of the interspike intervals (a measure

of the irregularity), was minimally affected for conductance standard deviation varied

between zero and twenty percent of the mean, as shown in Figure 4.7.

4.5 Dopamine and Performance

Dopamine performs many roles in the brain, including modulating GABAergic

synapses [Seamans 01] and sodium channel activation [Cantrell 97]. Experiments

have demonstrated an inverted-U-shaped relationship between dopamine concentra-

tion and working memory performance; that is, too much or too little dopamine

degrades working memory performance [Zahrt 97].

The model reproduces this behavior. If dopamine is low, GABAergic synapses

are weakened, while if dopamine is high, GABAergic synapses are strengthened

[Seamans 01], so I take the effective strength gsyn of the inhibitory to excitatory con-

centration as a proxy for dopamine tone and neglect temporal variations of dopamine

concentration. If dopamine, and thus gsyn is low, then little inhibition reaches the
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memory performance (A). Persistence (B) and switching performance (C)
as functions of inhibition strength are also shown. Solid lines represent
the number of active cells (out of 30) in the current pattern; dotted lines
represent the number of active cells outside of the pattern.
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excitatory cells, so the h-current does not activate, and persistent activity fails. If

dopamine is high, the excitatory cells receive too much input, causing them to fire

faster, enabling them to maintain persistent activity after a distracting signal.

Define the performance of the network to be the geometric mean (square root of

the product) of the number of cells that maintain persistent activity for 2500 ms after

the cue is removed and the number of cells that would have maintained persistent

activity but were turned off by the switching event, normalized such that maximum

possible score is 1. Using this metric, network performance as a function of dopamine

concentration (where the dopamine effect is indirect by way of its effect on GABAA)

exhibits an inverted-U shaped relation, as illustrated in Figure 4.8.
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CHAPTER 5

ANALYSIS

To understand the model’s behavior, I consider both the properties of the individual

cells and the network level effects. Since the simplified single cell model, introduced in

Section 2.2.4 with equations in Appendix A.2 forms the basis for both the excitatory

and inhibitory cells, I begin by studying that model.

5.1 Simplified Single Cell Model

The simplified single cell model only has two state variables – v and n – and so can be

studied via phase plane analysis. Its phase plane is shown in Figure 5.1. Trajectories

starting in the shaded region will never cross v = 0; thus the shading can roughly be

thought of as the points that fail to trigger an action potential, but note that this is

not necessarily meaningful if v is initially large. The red curve is the v-nullcline, the

set of points where
dv

dt
= 0. If the current state is below the v-nullcline,

dv

dt
> 0, and

thus v is increasing, so the state will move to the right on the diagram. Conversely,

above the v-nullcline,
dv

dt
< 0, so v is decreasing, and the state moves left. The

blue curve is the n-nullcline. To its right,
dn

dt
> 0, so n is increasing and states will

move upward on the diagram. To the left,
dn

dt
< 0, so states move downward on the

diagram. At the points where the two curves intersect,
dv

dt
=

dn

dt
= 0, so neither
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Figure 5.1: Phase plane for the simplified single cell model. The v-nullcline is in red,
the n-nullcline is in blue. Sample trajectories are shown in black. The
arrows indicate the direction of movement along the trajectory; note that
each trajectory approaches the fixed point. The shaded region is the set
of initial conditions from which v will never cross 0.
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state variable changes over time; these are known as fixed points, steady states, or

equilibria.

The stability of this fixed point depends on the nature of the eigenvalues to the

Jacobian

J =




∂f/∂v ∂f/∂n

∂g/∂v ∂g/∂n



 (5.1.1)

evaluated at the fixed point (v∗, n∗), with f =
dv

dt
and g =

dn

dt
. Numerically, I find that

the left-most fixed point of the system is approximately (v∗, n∗) ≈ (−75.116, 1.9278×

10−14) and the eigenvalues of J |(v∗,n∗) are approximately −.157165 and −.359540.

Since both eigenvalues have negative real part, this fixed point is stable; nearby

trajectories will approach the fixed point, as illustrated in the phase plane diagram.

The other two fixed points are at (−63.182, 1.4235 × 10−18) and (−49.957, 0.60474).

The first has eigenvalues .428964 and −.373251, so it is an unstable fixed point. The

second has eigenvalues 2.175835 ± 13.111964 i, so it is also unstable. (All numbers

here are numerical approximations.) Since the last two fixed points are unstable,

in practice they will never be observed, so the resting potential of the neuron is

v∗ ≈ −75.116 mV.

5.1.1 Excitation

Recall that Cm
dv

dt
= −Iion + Iapp, where Iion is the sum of the ion channel currents.

Thus increasing Iapp raises the value of
dv

dt
at each point, so the new v-nullcline

is at a place where
dv

dt
was previously negative; that is, somewhere above the old

nullcline; see Figure 5.2. If Iapp is abruptly increased, for example, as the result

of receiving excitatory synaptic activity, a state that was at the fixed point is now

below v-nullcline, so it begins to move to the right in the diagram. With the slightest

movement to the right, it becomes below the n-nullcline and therefore starts to move
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Figure 5.2: The effect of raising Iapp on the phase plane. (A) Raising Iapp to 0 raises
the v-nullcline from the solid red line to the dashed red line. This triggers
an action potential (black trajectory). If the applied current remains
elevated, firing becomes periodic (dotted black line). (B) Comparison of
effects of brief small increase in Iapp, brief large increase (to 0 as in A),
and sustained large increase to Iapp. For the brief pulses, the increase was
sustained during the shaded time period.
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up as well. However, potassium gating occurs on a far slower time scale than changes

to the electrical state, so v increases faster than n does. If v changes infinitely faster

than n, then the trajectory would move perfectly horizontal to the right until it hits

the v-nullcline. Thus if the local minimum is elevated above the old fixed point, there

will be a large change in v, while if it is not, then the change will be relatively small.

Thus there is a threshold value of Iapp where the behavior abruptly changes. In the

context of a neuron, this is the distinction between firing an action potential and not

firing an action potential. If the applied current is restored to its original value, the

v-nullcline returns to its original position, and the system approaches the fixed point.

5.2. If, on the other hand, applied current is sufficiently elevated and stays elevated,

then the fixed points can lose their stability and become centers, resulting in periodic

firing, as shown in Figure 5.3.

5.1.2 Sag Current

A sag current, by definition, is a current that activates in response to membrane

hyperpolarization; that is, it activates when the membrane potential is lowered. For

this section, consider the excitatory cell model from Section 3.2 and Appendix A.3.

For now, neglect the dynamics of the sag gating variable mh, and treat it as a

parameter. The synaptic gating variable s has no role in the single cell case, and

calcium concentration c only affects the dynamics via mh, so once again the only

state variables left are v and n, so phase plane analysis applies.

At rest, the cell is not hyperpolarized so mh should be low. If mh = 0, then

the initial dynamics are the same as for the simplified single cell model, discussed

above. Inhibition shifts the v-nullcline lower, causing a trajectory that started from

the fixed point to move left and down in the diagram. Hyperpolarization activates the

sag current, raising the value of mh, and thereby admitting a depolarizing current,
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Figure 5.3: Elevated Iapp leads to periodic firing. The bifurcation diagram is on top;
the frequency-current relationship is plotted below. The gray line denotes
the location of the SNIC bifurcation.
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shifting the v-nullcline up. When mh is sufficiently elevated, the two left-most fixed

points of the system disappear via a saddle-node bifurcation. The state now lies

below the v-nullcline, so v begins to increase, triggering an action potential. As the

membrane potential rises, the sag current deactivates. This process is illustrated in

Figure 5.4.

The sag current half-activation (i.e. mh = 0.5) occurs when v = θh, which depends

on calcium as shown in Figure 5.5. If the maximum possible value of θh, here −84.5

mV, is too high, then the afterhyperpolarization will activate the sag current, leading

to periodic firing, as shown in Figure 5.6.

5.2 Noisy Inputs

The working memory system constantly receives input from the rest of the brain,

modeled, as described in Section 3.4 by having each excitatory cell receive input

from 50 noise sources firing at 5 Hz. I suppose that the synaptic gating variable

immediately rises to 1 on an event, stays elevated for 3.5 ms, then begins to decay

with time constant 2 ms. This choice is comparable to the behavior of the synaptic

gating variables for the excitatory cell, as shown in Figure 5.7.

It will occasionally be useful to compare noiseless and noisy simulations. This

cannot simply be done by setting gnoise = 0, because the noise provides a depolarizing

current, so I adjust Iapp as well.
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(instantaneous changes inmh), and a trajectory of the system (black) with
a non-calcium modulated mh, taking θh = −80. The blue curve is the n-
nullcline; the red, green, and gray curves are the v-nullcline at rest, with
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(B) Traces of the membrane potential and sag current gating variable
over time in the trajectory shown in (A). Inhibition was applied during
the shaded time period.
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Figure 5.6: High values of θh lead to periodic firing. (A) Bifurcation diagram with
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stable fixed points as solid lines, and unstable fixed points as dashed lines.
(B) Frequency of stable limit cycle as a function of θh.
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Figure 5.7: Comparison of noise synapse with modeled excitatory synapse. The solid
and dashed lines correspond to the excitatory cell and noise source, re-
spectively.

5.2.1 Calculation of Average Noise Input

Each excitatory cell is connected to 50 noise sources firing at 5 Hz with synaptic

gating variables of the form

s(t) =






1 if tspike ≤ t < tspike + 3.5

exp((tspike − t)/2) if tspike + 3.5 ≤ t

(5.2.1)

The average value of
�

s where the sum is over all the noise sources to a given cell

is thus

s̄ =
5 · 50
1000

��
3.5

0

dt+

� ∞

0

exp(−t/2) dt

�
= 1.375 (5.2.2)

The form of the noise current is Inoise = gnoise
��

s
�
(v−vnoise) where vnoise = 0 mV

and gnoise = .005. Assuming the average membrane potential is at about −75 mV,

that gives an estimated equivalent increment in Iapp of 0.515625 mA. (Note, due to

the sign convention, Iapp is increased by the opposite of the synaptic input.)

60



5.2.2 Numerical Comparison

To test the above calculation, I ran single cell simulations with gnoise = 0 for varying

levels of Iapp. Input from inhibitory cells was simulated by 15 noise sources each

firing according to a Poisson process at 15 Hz. GABAA synapses decay slower than

the excitatory AMPA synapses, so I used the 5 ms decay rate time constant from

the inhibitory cell model. At the beginning of each simulation, I presented a strong

(Iapp = 2 mA) cue for 300 ms; this causes the cell to fire, admitting calcium. Since the

parameters were chosen (Appendix B.1) to allow the excitatory cells to not activate

unless the network is silent or the input is very strong, I wait until after the cue

to connect the inhibitory input. I then remove the cue, integrate for 2000 ms, then

compute the average calcium concentration over the next 1000 ms. This concentration

acts as a measure of the firing rate. I performed this procedure twenty times per data

point to account for variations in the inhibitory signal, and averaged the results. In

section 5.4, I show that a typical calcium concentration of an excitatory cell in the

persistent state is 1.05, which occurs in the noiseless model when Iapp = 3.23 mA, as

shown in Figure 5.8A.

Two major factors contribute to the nearly twelve-fold difference between the

analytic figure and the numerical estimate (3.23 − (−2.8) = 6.03): First, the noise

source is non-constant. Due to the threshold nature of action potential firing, small

fluctuations in membrane potential can make a large difference in firing rate. Second,

the inhibitory cells do not fire independently; their activity is correlated. Two near-

simultaneous applications of inhibition may be sufficient to activate the sag-current,

while either one independently would not.

At this high level of applied current, the cell would fire on its own, if not for

the inhibitory input. Since the inhibition occurs randomly, it is occasionally weak

enough, that it fails to overcome this firing tendency, resulting in a low but nonzero
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Figure 5.8: Behavior in the absence of external excitatory noise. (A) Average calcium
concentration in noiseless cells as a function of Iapp. The vertical dashed
line indicates the applied current corresponding to typical calcium con-
centrations of network cells during the persistent state. (B) Membrane
potential and calcium concentration traces for an excitatory cell with el-
evated Iapp as in the dashed line in (A). Without a cue stimulus, the
neuron has a low level of firing activity. (C) Same as (B) except a cue
was presented for 300 ms, leading to a higher firing rate.
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Figure 5.9: Example small network architectures. Arrows denote excitatory synapses;
circles denote inhibitory synapses. (A) Two cell network. (B, C) Three
cell networks.

firing rate in the absence of calcium. Higher calcium still leads to higher firing rates;

see Figure 5.8B and C.

5.3 Small Networks

To get insight into the network behavior, I begin by considering small networks. The

parameters for these simulations are adjusted to compensate for the different number

of synaptic inputs. The smallest possible excitatory-inhibitory network consists of

two cells: one excitatory and one inhibitory. See Figure 5.9.

5.3.1 Two Cell Network

The two cell network (Figure 5.9A) is the simplest possible example of an excitatory-

inhibitory network. When a cue is presented to the excitatory cell, it begins to fire.

If its calcium concentration rises sufficiently, it will be able to respond to future

inhibition by firing action potentials.
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Figure 5.10: Two cell network performance during persistence. In the top figure, the
solid and dashed lines are excitatory and inhibitory cell membrane po-
tentials, respectively. The sag current is plotted below. Parameters were
the same as for the full model, except gAHP = 0, gsyn = .4, gsyn,g = .15,
gh = .11, and delays of 15 ms were used with each synaptic transmission.

Once the stimulus is removed, there are two possibilities: either the last action

potential from the excitatory cell triggered a response from the inhibitory cell, or it did

not. In the gAHP = 0 case, this is essentially a function of the synaptic conductance

strength. (If gAHP is large enough to suppress inhibitory cell activity, then persistent

activity will be impossible, since there are no other sources of inhibition.) If the

inhibitory cell does not produce a response, or if its response is not strong enough to

activate the sag current, network activity immediately ends.

Neither cell is capable of firing spontaneously or of firing more than once in re-

sponse to the other cell; thus, persistent activity can only be maintained if each cell
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responds to every action potential of the other cell. This leads to a very regular high

frequency firing pattern, although the firing rate can be slowed by introducing delays

in synaptic transmission; these delays correspond to the time required for a signal

to propagate along the pre-synaptic cell’s axon and through the post-synaptic cell’s

dendrites. Figure 5.10 shows the cellular interaction during the persistent state.

5.3.2 Three Cell Networks

There are two possible three cell networks where all of the excitatory cells are con-

nected to all of the inhibitory cells in both directions and all the inhibitory cells

are bidirectionally connected to each other: networks with two inhibitory cells and

networks with two excitatory cells, Figures 5.9B and C, respectively.

In networks with multiple inhibitory cells, each inhibitory cell need not fire on

every cycle. In an inhibitory cell, recent activity activates the AHP current which

delays subsequent firing activity. If this delay is long enough, other inhibitory cells

will fire first, inhibiting the selected cell, blocking its response entirely. In the case

of two nearly identical inhibitory cells, this process leads to the inhibitory cells firing

on alternate cycles after an initial transient as illustrated in Figure 5.11A. In larger

networks, I found that including AHP improves the ability to maintain persistent

activity, which I suspect is because this turn-taking phenomenon increases the number

of active synaptic connections.

The two excitatory, one inhibitory cell network illustrates the role of past activity

in determining present response properties. Each excitatory cell necessarily receives

identical inhibitory input, but if one was presented with a cue stimulus and the

second was not, the first would have an elevated calcium concentration and therefore

respond to inhibitory input with an action potential, while the second would not.

This situation is shown in Figure 5.11B.
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Figure 5.12: Example calcium time courses for cells in the baseline state (blue) and
the persistent state (red). Dotted lines indicate the mean value, and the
shaded areas are the region within one standard deviation of the mean.

5.4 Calcium and State Discrimination

The fundamental concept motivating this model is that cytosolic calcium accumulates

in response to neural activity and that response to inhibitory input depends on cal-

cium concentration. Since the cells fire irregularly, calcium concentration fluctuates

significantly over time in both the baseline and persistent activity states, see Figure

5.12.

If this calcium hypothesis is true, then regardless of the mechanisms involved to

respond to calcium, in order for both persistence and baseline behavior to be stable,

there must be statistically significant differences between the calcium concentrations

in the two states. Calcium concentration is primarily a function of the influx and

efflux rates gCa and kCa as well as the firing rate. For now, I treat gCa as fixed.

To get excitatory cells to fire at a given frequency, I drive them with a square-wave
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Figure 5.13: Excitatory cell response to 50 mA, 0.2 ms square-wave pulse (red) and
70 mA, 0.2 ms square-wave pulse (black). The weaker pulse fails to
trigger an action potential; the stronger pulse succeeds. Note that the
duration of the action potential far exceeds the duration of the stimulus.

pulse of 70 mA for 0.2 ms at the desired time points, chosen from a Poisson process.

This stimulus was chosen because it is near the threshold for reliably triggering an

action potential, see Figure 5.13.

To measure the reliability with which different firing rates can be distinguished

from a given baseline rate, taken to be 3 Hz, for various choices of the calcium removal

rate kCa, I take one excitatory cell and compute its corresponding calcium time course

for 51, 000 ms. The first thousand milliseconds are discarded as an initial transient;
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the average and standard deviation are computed for the rest. This procedure was

done for all points on a 40 × 40 grid, where kCa ranged between 0 and 10, and the

firing rate ranged between 1 and 40 Hz.

The significance of variation between the calcium time course at a given firing

rate and at 3 Hz was quantified as the ratio between the difference of the average

concentrations and the sum of their standard deviations. Thus calcium concentrations

that are very different or are very stable (and hence low standard deviation) have

larger significance. The higher the significance, the easier it should be for a calcium-

based mechanism to distinguish between the two cases.

The results of this investigation are shown in Figure 5.14. Colors denote average

calcium concentration. White stripes denote a region where the significance of varia-

tion as defined above is less than 1; that is, in the white-striped region, the sum of the

standard deviations is bigger than the difference between the averages. A calcium-

based model would not be very effective for these (kCa, firing rate) pairs. In the

black-striped domain, the significance lies between 1 and 2, while in the non-striped

region, the significance is bigger than 2.

Another perspective on state discrimination as a function of calcium comes from

considering the relationship between calcium concentration and activation probabil-

ities. To quantify this, for each of 46 choices of initial calcium concentration, I ran

100 simulations of a single excitatory cell receiving input from a subset of a pool

of 30 artificial inhibitory cells firing at 10 Hz, with each inhibitory cell connected

with 50 percent probability. In particular, note that the number of inhibitory con-

nections averages 15 but the exact number varies between simulations. To partially

compensate for the lack of correlation in the inhibitory inputs, I raised θh,max, taking

θh,max = −82, which makes it easier for the sag-current to activate. The probability

that a given excitatory cell is active between 1000 and 2000 ms (defined as firing more
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Figure 5.14: Average cytosolic calcium concentration in an excitatory cell in arbitrary
units as a function of firing rate and calcium decay, kCa. Concentration
in the white region exceeds 1. In the white striped region, 1 standard de-
viation about the mean calcium concentration overlaps with 1 standard
deviation about the mean for the given kCa value at 3 Hz. In the black
striped region, the overlap occurs between 1 and 2 standard deviations;
the rest are more than two standard deviations apart.
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Figure 5.15: Probability of activation as a function of initial calcium concentration.

than 10 action potentials during that time interval) as a function of initial calcium

concentration is shown in Figure 5.15.

In particular, note that 10 percent of cells are active 1000 ms after having a

calcium concentration of 0.6. As shown in Figure 5.12, a typical calcium concen-

tration for a cell maintaining persistent activity is 1.05. By equation (A.3.3), cal-

cium is cleared with mass action dynamics with rate ε kCa = 0.002. Thus the time

τ for calcium to drop from 1.05 to 0.6 assuming no additional calcium flux satisfies

1.05 exp(−ε kCa τ) = 0.6. Solving, we find τ = 279.8079 ms as an estimate for the

time an active excitatory cell must be suppressed to be deactivated to allow pattern

switching or network shutdown. For 95% probability of not being active, the cal-

cium concentration would need to be lower than 0.54, which would correspond to

332.4882 ms suppression. Note that if a pattern consists of 30 cells, then even with

95% inactivation, on average 1.5 cells will remain active.
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still active after the switching event.

In practice, pattern switching in the network model will take longer because the

irregular inhibition will not be able to fully suppress the original pattern for a sus-

tained period of time. To test the consequences of this irregular signal, I chose 20

random networks, presented a pattern of 30 cells to each for 300 ms, removed the cue,

advanced for another 1000 ms, then applied a strong disjoint distracting pattern for

various durations and advanced the entire simulation until 2500 ms after the removal

of the cue stimulus. On average 18.2 cells from the original pattern remained on after

a 300 ms distractor. With a 500 ms signal, an average of 10.3 remained active, and

with a 700 ms distractor only 1.3 were active, on average. The results are summarized

in Figure 5.16.

5.5 Excitatory-Inhibitory Interactions

I now consider the dependence on the nature of the excitatory-inhibitory interactions.
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5.5.1 Firing Rate

As inhibition drives the excitatory cell activity, the amount of inhibition received by

an excitatory cell controls its firing rate. Recall from Figure 5.14 that the firing rate

is not merely a question of physiological relevance; if the firing rate during persistent

activity is too low, it becomes statistically impossible to reliably identify persistence

vs baseline states based on the calcium concentration. Not only does this mean a

formerly active cell will eventually lose its elevated calcium and become quiescent,

but it also implies that fluctuations due to noise-driven firing have the potential to

activate non-pattern cells, further degrading the pattern.

Inhibitory input is a multi-dimensional value. For simplicity, I suppose that spike

times are generated according to a Poisson process with each source cell firing at

the same rate. Three independent parameters remain: the firing rate, the number of

connected cells, and the strength of each of these connections. Two cells firing at 5

Hz are not equivalent to one cell firing at 10 Hz: with each spike, a cell applies a fixed

current to the post-synaptic cell. Thus the peak theoretical current flow from two

cells is double the effect of one cell. Since the sag current requires strong inhibition

to activate, synchronized low frequency firing is more effective than unsynchronized

higher frequency firing. Likewise, doubling the number of presynaptic cells is not

equivalent to doubling the connection strength, because the later is equivalent to the

new cells being in perfect synchrony with the old.

To study the role of the number of synaptic connections and their strengths, I

considered the firing rate of the inhibitory cells fixed at 15 Hz, and chose values for

the remaining two parameters. I simulated an excitatory cell connected to the chosen

number of artificially firing inhibitory neurons. I presented a strong cue (10 mA) for

500 ms to build up an elevated calcium level and then measured the average firing rate

(1000 / average ISI) and duration of persistence. For each of the parameter choices,
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Figure 5.17: Firing rates and duration of persistent activity are functions of inhibitory
input. Median firing rates are shown by color in Hz. White stripes
indicate regions where persistent activity is maintained for a median
duration between 1,000 and 10,000 ms; diagonal stripes indicate regions
where persistent activity is maintained beyond 10,000 ms. Here the IN
cells are assumed to be firing at 15 Hz.
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I ran 25 such simulations and averaged the results. If the connection strength is

too low, then no matter how many inhibitory cells are connected, the excitatory cell

will not be able to maintain persistent activity. Persistence performance exhibits an

inverted-U shaped relationship with both the firing rate and the number of inhibitory

cells. If the parameters are too small, then the sag current fails to activate; if they

are too high, then the inhibition suppressed the excitatory cell activity. The results

are summarized in Figure 5.17.

5.5.2 Connection Probabilities in Networks

In the full network, as the percentage of inhibitory cells attached to each excitatory

cell increases, the firing rate again increases. As the input becomes more consistent,

the cells synchronize and fire faster and more rhythmically, resulting in a lower CV.

Due to the synchrony, even with full connectivity, the inhibition is not consistent

enough to suppress persistent activity. Robustness to distractors improves with an

increase of inhibitory to excitatory connections because this increase causes a greater

difference in baseline and persistent state inhibition. Switching performance, however,

is degraded as the old patterns become more likely to reactivate following suppres-

sion due to the increase in inhibitory input. Increasing the probability of excitatory

to inhibitory connections and decreasing the probability of inhibitory to inhibitory

connections both serve to increase the inhibition received by excitatory cells, and

therefore produce similar effects in all five metrics.

To quantify these effects, I ran 20 full network simulations for 11 choices of con-

nection probability for each of the three types of conductances, computed their per-

formance in each of the five metrics and averaged the results, as shown in Figure

5.18.
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5.5.3 Rebound

In the two cell network (Figure 5.10), only one cell provided inhibition, so the mem-

brane potential traces are very smooth; it is clear that inhibition precedes the exci-

tatory cell activity. In a large network, the inhibitory input is much less regular; the

excitatory cells frequently receive subthreshold inhibition, including after the activa-

tion of the sag current.

To see the role of inhibition coincidence in large networks, I ran a network simula-

tion and considered the spike-triggered-averages of membrane potential, sag current,

and synaptic current for a particular neuron. That is, for all 53 times it fired an

action potential, I averaged the traces for each of these variables over the preceding

30 ms. I found that the total inhibition peaked around 25 ms prior to a spike and

that the sag current peaked about 13 ms before the action potential.

5.6 Rhythmicity and Irregularity

Some models of working memory [Brunel 01] achieve a coefficient of variation (CV)

of their interspike intervals near 1 by careful balancing of excitation and inhibition

combined with abundant near 1 CV external noise sources. In these models, the

combination of network activity and irregular noise input are necessary to trigger

action potentials, which are then themselves distributed very irregularly.

The current model, by contrast, generates its own irregular activity as a conse-

quence of the excitatory and inhibitory cell interactions. In the absence of noise,

additional applied current is necessary to compensate for lack of the net depolariz-

ing effect from the noise, but in simulations beginning with a 300 ms cue, with the

appropriate choice of Iapp persistent activity is maintained for the following 1000 ms

with a CV well over 0.5, on average. See Figure 5.20.
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The working memory system is not completely irregular, however. Experimental

evidence shows that the field potential exhibits a gamma rhythm during the perfor-

mance of working memory tasks [Pesaran 00, Tiesinga 09].

To measure the relationship between regularity, irregularity, and the maintenance

of persistent activity, I ran 100 different networks with the standard parameter set.

For these tests, I defined a cell maintaining persistent activity to be a cell that fires

an action potential between 2300 and 2500 ms after the removal of a cue stimulus.

More successful maintenance of persistent activity was correlated with lower CV

(r2 ≈ 0.403229) and higher firing rate (r2 ≈ 0.713721) but uncorrelated with field

potential frequency (r2 ≈ 0.0701306). High firing rates were correlated with low

CVs (r2 ≈ 0.662122). The results are summarized in Figure 5.21. The CV measure

used here is the CV of the combined interspike intervals of all of the trained cells;

this measure is correlated with the mean of the CVs for the individual cells with

r2 ≈ 0.75298.
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CHAPTER 6

CALCIUM WAVES

The model as presented in Chapter 3 treats cytosolic calcium, along with all the

other state variables, as being uniform throughout the cell. It assumes calcium in-

creases with each action potential and is cleared exponentially. The reality is more

complicated: calcium distribution is non-uniform. Calcium is an important second

messenger molecule [Kretsinger 80] and is heavily regulated by the cellular machinery.

The endoplasmic reticulum permeates the dendrites and acts as a calcium store.

Its SERCA pumps constantly extract calcium from the cytosol. When triggered by

InsP3, it releases some of this calcium back into the cytosol. Regions of elevated cal-

cium then spread throughout portions of the dendritic tree, as observed in [Ross 05].

A model of this behavior was introduced in Section 2.2.6, and the full equations are

listed in Appendix A.5.

The working memory model considered here uses a very simple model of calcium

dynamics to make the individual excitatory cells bistable. The ER allows the calcium

to be bistable as well.

6.1 Active Dendrites and Calcium Wave Initiation

The key question then is what is necessary to setup the system to create the bistability.

Does an individual metabotropic glutamate receptor produce enough InsP3 to trigger
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and sustain a calcium wave, or does the InsP3 need to be amplified and spread in a

wave itself? What is the role of the back-propagating action potentials?

The theory that a wave of InsP3 may accompany a calcium wave was first pro-

posed in [Fall 04, Wagner 04] in the context of the calcium wave accompanying the

fertilization of Xenopus oocytes.

Experimental evidence suggests that back-propagating action potentials tem-

porarily elevate dendritic calcium levels [Berridge 98, Hong 07]. This change is very

brief; the calcium is quickly cleared by either being pumped back into the extracel-

lular space or by being absorbed in internal organelles like the mitochondria. Since

glutamate stimulation typically does not trigger a calcium wave unless the neuron

was recently active [Moore 09, Sidiropoulou 09], it is theorized [Berridge 98] that

the calcium admitted by back-propagating action potentials serves to prime the ER,

increasing its sensitivity to InsP3.

The working memory model of [Fall 06] uses a combination of ER calcium dynam-

ics and calcium influx as a response to action potentials to maintain elevated calcium

levels and thereby persistent activity. Their model was a firing rate model with no

explicit ion channels and no concept of space.

In 2003, Poirazi et al [Poirazi 03] published a very detailed spatial model of a

CA1 pyramidal neuron, complete with a non-uniform distribution of many types of

ion channels.

I started with their model, then deleted all of the neuron except for a continuous

portion of the apical trunk; see Figure 6.1. I inserted ER calcium dynamics as

defined in Appendix A.5. InsP3 was permitted to diffuse freely, but no degradation

or production was modeled.

Periodic back-propagating action potentials were initiated by periodically instan-

taneously depolarizing the dendrite near the somatic end.
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Figure 6.1: Dendrite cutting, showing its location on the CA1 pyramidal neuron of
Poirazi et al [Poirazi 03]. The red region denotes the location where InsP3

will be administered to trigger a calcium wave in some of the experiments.
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Regardless of the driving frequency, the calcium will always enter no faster than

the rate it would enter if the channels were fixed open. As long as this maximum

is low enough, the cell will be able to pump out the calcium and prevent back-

propagating action potentials from triggering a calcium wave on their own. Indeed, in

the parameter regime tested, back-propagating action potentials were never sufficient

to initiate a calcium wave. The effects of firing rate on calcium concentrations is
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shown in Figure 6.2. Concentration was measured at the point farthest from the

soma.

I then applied various concentrations of InsP3 on the non-somatic side and used

the method of bisection to locate the minimum amount of InsP3 necessary to trigger

a calcium wave for each firing rate. The threshold InsP3 level is initially almost

constant for low firing rates, but beyond a certain rate, it drops dramatically. The

results of this experiment are summarized in Figure 6.3.

6.2 Role of Geometry

The reaction diffusion equations governing calcium dynamics apply only within the

dendrite, with Neumann boundary conditions along the plasma membrane when ne-

glecting ion channel contributions. The dendrites of an actual neuron twist and turn,

as in the reconstruction of the CA1 pyramidal neuron from [Poirazi 03] in Figure 2.1.

The three-dimensional structure is complex with many branches and turns; in a rat,

the dendrites of the corresponding cell type have a combined length of 11,900 ± 1,000

µm [Bannister 95]. To study how this geometry influences the propagation of calcium

waves, I consider five two-dimensional analogs for dendritic-like geometry, illustrated

in Figure 6.4: a straight dendrite, a curved dendrite, an abrupt opening, a gradual

widening, and a branch point.

To avoid issues unique to the specific choice of calcium model, I consider simpler

dynamics with only one variable:

ut = ∆u− u (1− u) (α− u), (6.2.1)

with 0 < α < 1.

By inspection, this equation has three constant solutions: u = 0, u = α, and

u = 1. The u = 0 and u = 1 solutions are stable; the u = α solution is unstable. The
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Figure 6.4: Two dimensional dendritic-like geometries. (A) Straight dendrite. (B)
Curved dendrite. (C) Abrupt opening (e.g. soma). (D) Gradual widen-
ing. (E) Branch point.
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simulations in this section were performed using Virtual Cell [Loew 01] or MATLAB’s

PDE Toolkit.

6.2.1 Straight and Curved Dendrites

The equation (6.2.1) admits a non-constant traveling front solution, that is, a solution

of the form u(x, t) = U(x−c t) with velocity c =
√
2

�
1

2
− α

�
such that lim

ξ→−∞
U(ξ) =

1 and lim
ξ→∞

U(ξ) = 0. This result is well known in the literature, see for example

[Fife 79], but the proof is brief and follows.

Consider for a moment instead the separable equation

φ� = −b φ (1− φ), (6.2.2)

Notice that

φ�� = −b φ (−φ�) + (1− φ)(−b φ�)

= b φ φ� − b φ� + b φ φ�

= 2 b φ φ� − b φ�

= 2 b φ� (φ− 1/2)

= 2 b φ� (φ− α− (1/2− α))

= 2 b φ� (φ− α)− 2 (1/2− α) b φ�

= −2 b2 φ (1− φ) (φ− α)− 2 (1/2− α) b φ�.

Thus if we let A = 2 b2 and p = 2 b (1/2− α), we find φ satisfies

φ�� + p φ� + Aφ (1− φ) (φ− α) = 0. (6.2.3)

Note that U satisfies U �� + c U � −U (1−U) (α−U) = 0. Thus, working backwards, it

follows that the wave-speed of (6.2.1) in the one-dimensional case is c = (1−2α)/
√
2.

(Since (6.2.2) is separable, one can also find an explicit formula for U, but it is not

needed here.)
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If a wave is uniform in all but one spatial dimension, then the wave dynamics

are identical to the one-dimensional solution. In a straight dendrite with reflecting

(Neumann) boundary conditions, the cross-sections are small compared to the length,

so they equilibrize quickly and the wave is essentially one-dimensional.

Furthermore, my numerical investigations using Virtual Cell revealed only minor

slowing in wave speed when propagating around a curve.

6.2.2 Abrupt Opening

Abrupt openings, by contrast, have been analytically proven to have drastic conse-

quences for wave propagation [Chapuisat 05]: if the original source is too small and

the wider area too large, then wave propagation will stall. This is of biological inter-

est as the soma is far bigger than the dendrites. Calcium waves that enter the soma

have the potential to regulate gene transcription.

An example of a stalled bistable wave at an abrupt opening is given in Figure 6.5.

The contours are not quite circular due to the width of the source region. We show

both horizontal and vertical profile views of the concentration along the coordinate

axes. The right half-plane by itself supports an unstable radially symmetric stationary

solution, shown for comparison purposes in the lower-right graph. The x-axis denotes

the distance from the origin. Negative values are included to illustrate the symmetry.

For each simulation that I tried, stalling waves have a value at the origin (the location

of the maximum value in the right half plane) less than that of the radially symmetric

stationary solution. As the source radius increases, the maximum value in the right

half plane increases. It appears that this value gets arbitrarily close to that of the

radially symmetric case as the source radius approaches the critical size for wave

propagation.

The eikonal equation implies that for an infinitely sharp wavefront, v = c −Dκ
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Figure 6.5: A close inspection of a stalled bistable wave reveals the nature of the
stationary solution. Here we take threshold value α = 0.30 and source
radius r = 1.50. Contour lines for u-concentration are shown, from the
left as u = 0.9, u = 0.8, . . . , u = 0.1.

91



where v is the local velocity of the front, c is the velocity of a plane wave, D is the

diffusion constant, and κ the local curvature of the front. This formula provides one

strategy for experimentally estimating the diffusion constant [Lechleiter 91].

Strictly speaking, this curvature-velocity formula does not apply since the wave

front is not infinitely steep, but I use it to provide an estimate for the blocking source

radius. Wave blocking implies the existence of a stationary solution, that is, one

where v = 0. In equation (6.2.1), D = 1, so that implies c = κ at all points along the

front. That is, the front would be an arc of a circle of radius 1/κ = 1/c. In particular,

if the source has width greater than 1/c, then no such arc can be drawn to block the

entire front. Thus, if the source has width greater than 1/c, the wave will propagate

into the half-plane.

The group that proved the existence of waving blocking later published a nu-

merical study to locate the threshold between wave propagation and wave blocking

[Dronne 09]. Their equation was scaled differently, but otherwise I performed the

same numerical study.

I then compared my results to the eikonal prediction. As expected, all of the

threshold widths were less than 1/c. I wanted to see how these widths compared with

1/c, so I plotted the ratio as a function of α, and found the relationship was very

nearly linear. Taking the line of best fit, the threshold radius rthreshold satisfies

rthreshold ≈ 2.0016α− .0265

c
(6.2.4)

or simply rthreshold ≈ 2α

c
. The results are summarized in Figure 6.6.

Additional Threshold Evidence

As an alternative to the continuous bistable equation, consider the piecewise linear

PDE

ut = ∆u− u+H(u− α), (6.2.5)
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for some α ∈ (0, 1/2), where H is the Heaviside step function. That is, H(u− α) = 1

for u > α and is 0 for u < α.

Unlike the reactions in (6.2.1), the reactions here are not continuous. In the other

model if u was near α, there would be next to no reaction. With this piecewise linear

model, f(u) has its most positive and most negative values near the threshold α.

Start by determining the speed of a 1-dimension traveling wave, u = U(ξ), where

ξ = x − ct, where U(−∞) = 1 and U(∞) = 0. Choose coordinate axes such that

U(0) = α. Let UL represent the solution for ξ < 0 and UR the solution for ξ > 0. We

must have UL(0) = UR(0) = U(0) = α and U �
L(0) = U �

R(0).

Then for ξ < 0, U > α, so UL is a solution to

φξξ + c φξ − φ+ 1 = 0, (6.2.6)

which has general solution

φ(ξ) = C1 e
r+ ξ + C2 e

r− ξ + 1, (6.2.7)

where

r± =
−c±

√
c2 + 4

2
. (6.2.8)

Imposing the conditions UL(−∞) = 1 and UL(0) = α we find C2 = 0, and C1 = α−1.

Thus

UL(ξ) = 1− (1− α)er+ ξ (6.2.9)

and hence U �
L(0) = (α− 1) r+.

Similarly, for ξ > 0, U < α, so UR is a solution to

ψξξ + c ψξ − ψ = 0, (6.2.10)

which has general solution

ψ(ξ) = C3 e
r+ ξ + C4 e

r− ξ, (6.2.11)
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where r± are as above. Imposing the boundary conditions UR(∞) = 0 and UR(0) = α,

we find C3 = 0 and C4 = α, thus

UR(ξ) = α er− ξ, (6.2.12)

and hence U �
R(0) = α r−.

Since U �
L(0) = U �

R(0), it follows that (r+ − r−)α = r+, so after plugging in the

definitions of r± and solving for c, one finds

c =
1− 2α√
α− α2

. (6.2.13)

The discontinuity makes numerical simulations more challenging, but using the

same procedure as before, I found

rthreshold ≈ 2.2613α− .0760

c
. (6.2.14)

6.2.3 Gradual Widening

I then considered the gradually widening geometry. At this point, the opening angle

matters: if the angle is 0 degrees, then the dendrite is perfectly straight, and the wave

propagates according to the one-dimensional solution; the thickness of the dendrite

has no effect, and 0 is the infimum of the set of all possible source radii with propaga-

tion. On the other hand, if each side opens up at 90 degrees, then the geometry is a

rectangle propagating into the half-plane as described in the previous section, which

has a threshold radius of about 2α/c, where c =
1− 2α√

2
is the planar wave velocity.

Any formula for the effects of the angle should satisfy these two points.
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I originally considered
2α

c
sin(θ/2), but found that this formula consistently un-

derestimated the threshold radius, although the error decreased as α increased, sug-

gesting that the angle dependence also had an α dependence. Ultimately, I arrived

at the following conjecture:

rthreshold =
2α

c

sin
�
θ
�
α (1− α)

�

sin
�

π
2

�
α (1− α)

� (6.2.15)

The planar wave velocity c for waves with threshold α and 1− α are opposites, so it

is reasonable to expect both terms to appear symmetrically in the threshold formula.

The denominator of the second factor scales the result to be consistent with the

conjecture for the half-plane.

Like the half-plane formula, equation (6.2.15) is just a conjecture, but it gives

good agreement with numerical experiments, as shown in Figure 6.7. This formula
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also gives good agreement for the piecewise-continuous bistable equation (6.2.5) where

c is as in (6.2.13).

6.2.4 Branch Points

To define a branch point geometry, one must know all three radii and the angles

between one branch and the other two. The propagation of calcium waves towards and

away from the soma both have important, though distinct, biological ramifications.

Waves extending into the dendritic tree alter the neuron’s excitability, by modulating

sag currents [Egorov 02] or calcium-gated potassium channels [Poolos 99, Sah 02].

Waves entering the soma have the potential to alter gene transcription.

For simplicity, I restrict my attention to waves entering a straight branch from an

angle, as in Figure 6.4E. This choice is reasonable because waves are generally able

to pass from a large geometry into a smaller one, and because this is approximately

the structure of the apical trunk; the branches are much smaller than the trunk, as

illustrated in Figure 6.1.

As a first case, consider a wave propagating from a branch entering the trunk at

a right angle. If the far side of the dendrite is infinitely far away, then this is the

abruptly expanding geometry of Section 6.2.2. As the destination trunk gets thinner,

the reflective nature of the far wall’s boundary conditions concentrates the diffusing

substance, facilitating wave propagation. A numerical study of this behavior is given

in Figure 6.8.

If instead the destination radius is fixed, then for a given source radius, the angle

of the branch controls whether or not the wave will block. The steeper the angle

or the smaller the radius, the harder it is for the wave to propagate. The threshold

curves are illustrated in Figure 6.9.
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6.3 Future Directions

This calcium investigation can be extended in several ways. The working mem-

ory model can be combined with the model for ER-based calcium dynamics.

Metabotropic glutamate receptor activation then allows input from the rest of the

brain to help maintain elevated calcium. Due to the ER priming effect of back-

propagating action potentials (Figure 6.2), only cells with high activity will respond

with a calcium wave. A spatial model of the excitatory cells would allow them to have

locally elevated calcium levels, allowing them to selectively increase their response.

Conjectures can be developed and proved to describe propagation through a branch,

including other types of branches not considered in Section 6.2.4. Using an approach

as in [Sneyd 93], it may be possible to make a conjecture about the curvature-velocity

relationship for the scalar bistable equation.
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CHAPTER 7

INTERACTION WITH OTHER BRAIN SYSTEMS

The working memory system does not exist in isolation; it constantly interacts with

other brain systems. Dopamine concentration is elevated during working memory

tasks [Watanabe 97]. Other systems [Gabrieli 95, Gruber 04] provide feedback regu-

lating and potentially correcting the memory.

7.1 Dopamine

Dopamine modulates GABAA conductances; as dopamine increases, the connec-

tion strength increases. There is both a slow global dopamine tone [Romanides 99]

and faster local fluctuations triggered by the performance of working memory tasks

[Watanabe 97].

Figure 4.8 introduced the effects of dopamine tone by studying the effects of

altering the inhibitory to excitatory conductance strength gsyn. In short, if dopamine

(and thus the conductance) is too low, the excitatory cells do not receive a strong

signal, so the sag-current barely activates, and the network fails to maintain persistent

activity. If dopamine concentration is high, then the signal is too strong, and the

excitatory cells become too active and switching performance is impaired. Thus either
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extreme concentration impairs working memory performance, leading to an inverted-

U-shaped performance vs dopamine curve, consistent with experimental observation

[Zahrt 97].

On a more local perspective, the dopamine dependence improves working memory

performance, in particular, the ability of the network to be robust to distractors. I

define a distractor as a pattern presented to the excitatory cells after a cue stimulus

of the same magnitude in applied current, number of cells, and duration. If the cue

stimulus had not been applied, the distracting pattern would activate. This is the

same definition used in [Brunel 01].

The base model is somewhat robust (Figure 5.18, third row), but dopamine im-

proves its performance. The fundamental difficulty with robustness is that there is a

trade off between robustness and persistence. The stronger the initial cue, the higher

the probability of successful activation, but then robustness demands an equally

strong cue, which increases the probability of activation of the distracting pattern.

When the network is inactive, dopamine is low and GABAA synapses are weak, so

the excitatory cells receive little inhibition. In an active network, dopamine is high,

and the excitatory cells receive more inhibition and are therefore harder to activate.

The primary benefit then is that with dopamine modulated synapses, the network

may activate with a weaker cue.

Average persistence and robustness for dopamine modulated networks and net-

works not modulated by dopamine for various cue strengths are compared in Figure

7.1. Activity is measured 1000 ms after the end of the relevant stimulus. The maxi-

mum robustness performance – defined here as the geometric mean of active original

cells and inactive distracting cells – is higher for the dopamine-modulated case. In
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Figure 7.1: Dopamine modulation of synaptic transmission improves working mem-
ory performance. Persistence (blue) measures the active cells in the orig-
inal pattern, robustness (green) the number of inactive cells from the
distracting pattern, and red is their geometric mean. (A) Dopamine-
modulated networks. (B) Networks without dopamine dynamics.

102



0 200 400 600 800 1000
0

0.5

1

t (ms)

[D
op

am
in

e]
Algebraic  Equation
Differential  Equation
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Parameters for the differential equation model (7.1.2) are ε = .1, β = .2,
and τ = 100. I took A to be 0 until t = 100, then I set A = 1.

these simulations, I took gsyn = D gsyn,1 where D is the dopamine concentration in

normalized units, which I took to be governed by

D =
1

2
H(t− 100)

�
1− cos

�
t− 100

1000/(2 π)

��
H(600− t) + H(t− 600), (7.1.1)

whose graph is the blue curve in Figure 7.2. A more sophisticated model for dopamine

regulation would respond directly to the network’s activity A. One such approach is

to average the output synaptic gating variables of the excitatory cells (possibly with a

delay), then pass that value through a sigmoidal function to estimate A. A differential

equation that gives similar dynamics to (7.1.1) is

dD

dt
=

D (1−D)A+ εA− β D

τ
, (7.1.2)

the green curve in Figure 7.2.

7.2 Electrical Modulation

Dopamine modulation is an example of chemical feedback to the working memory

system; other brain systems, like the basal ganglia [Gabrieli 95], provide feedback
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by other mechanisms. To test the ability of electrical feedback to selectively refine

a working memory retained pattern without disrupting persistent activity in the

remaining portions of the network, I chose 20 random networks, presented a cue

pattern to 30 cells for 300 ms, waited an additional 200 ms, then applied varying

amounts of applied current to a subset of 5 of the pattern cells for 1000 ms.

I found that moderate values of applied current had minimal impact on the rest of

the pattern’s persistent activity, but hyperpolarizing currents were able to suppress

the activity of the selected subset. Examples are shown in Figure 7.3.

Mongillo et al has shown that strong excitatory pulses may play a role in rein-

stating persistent activity in a calcium based model of working memory and argues

that this approach may make working memory performance less energy intensive

[Mongillo 08].
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CHAPTER 8

SIMULATING THE MODEL

Simple differential equations may be solved analytically, and simple systems of dif-

ferential equations may be analyzed geometrically [Strogatz 94], but in general the

complex differential equation based models found in mathematical neuroscience are

not easily studied with traditional analytic techniques. The most practical solution is

often to numerically integrate the models. Many simulation tools have been developed

over the years, some of which are introduced in Section 8.1.

Most of these simulators for running one particular simulation with one particular

network. While this approach would work, it clashes with one of the objectives of

this project; namely to develop a general model of working memory that works with

a variety of network architectures of heterogeneous cells across a large region of the

parameter space. This work focuses on the performance statistics of the general

model, not the results of an individual simulation.

To efficiently perform this study, I needed a simulator optimized for abstraction:

Cell parameters should be describable as probability distributions, not just numbers.

Networks consist of connections between groups of cells. Time can be measured

relative to events (e.g. the removal of the cue stimulus) not just as fixed numbers.

Simulations may fork and follow different paths with different parameter choices.

Analyzing the results requires comparing groups of simulations.

Since none of the standard simulators work on this level of abstraction, I built my
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own: snnet is a python library designed to facilitate the abstract specification and

study of neural networks. It is an extensible intermediary that can in principle be

used with any numerical integration package. As part of its abstraction layer, snnet

optionally performs repeated runs, parameter sweeps, and analysis – even with user

supplied analysis functions – in parallel to take advantage of the modern trend for

multi-core computers.

8.1 Overview of Standard Tools

XPPAUT [Ermentrout 02] is a general-purpose integration tool, supporting a wide

variety of integration algorithms. Equations are specified using standard mathemat-

ical notation. Neural network simulations can be done in XPPAUT by using an

array-like notation to define a group of neurons at once and tables to define network

connectivity and heterogeneities, but single cell models are a more typical use case.

After simulation, all data must be exported to another tool for analysis.

Simulators designed specifically for working with neurons include NEURON

[Hines 97], MOOSE [HarshaRani 11], NEST [Gewaltig 07], and Brian [Goodman 09].

The different simulators support different features: NEURON and MOOSE allow

spatially extended neurons, while Brian works only with point models. NEST works

well with large heterogeneous networks of simple cells. NEURON offers a graphical

tool for defining the network architecture. Brian lets the model be defined directly

from the equations with a minimum of syntactic overhead. It also has experimental

support for algebraic preprocessing to simplify the model equations.

All four of the simulators mentioned above offer a Python interface or – in the case

of Brian – are written in Python. Python is an interpreted programming language

often described as a “glue” for combining other programs, and the abundance of

Python-compatible libraries available is part of what makes Python so compelling.
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There is a large collection of scientific software available for Python, much of it freely

available, including numpy for numerical calculations, sympy for symbolic math, and

matplotlib for graphics. Code written for NEURON (or MOOSE, etc. . . ) using its

Python interface is free to access these or any other installed Python library, vastly

increasing the capabilities of the simulator.

The PyNN project [Davison 08] is developing a high-level front end in Python for

these and other simulators that would allow a single model description to work with

any of the supported simulators. Models are currently not easily portable between

the simulators.

8.2 Snnet

Just as a biological experiment consists of two distinct parts: the cells, organisms,

etc. . . that are being experimented with, and the protocol that is being used, there are

two phases to defining a snnet simulation: specifying the dynamics, and specifying the

protocol (parameter changes, etc. . . ). The dynamics are specified using a simplified

XPPAUT-like syntax [Ermentrout 02], extended to support probability distributions.

The protocol is specified in Python using a series of calls to snnet, although minimal

to no Python knowledge is required: in principle the only pure Python line required is

a line ordering it to load the snnet library. Using one additional line, a def statement

to identify the simulation protocol, allows parameter sweeps and repeated runs.

The remainder of this section focuses on highlighting a few design decisions.

The snnet library, examples, and a user’s guide are available online at: http:

//ramcdougal.com/snnet/
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8.2.1 Dynamics Specification

Each cell type is described once; the control code instantiates multiple copies as

needed. The primary objective was to keep the specification language as simple

and math-like as possible; this naturally led to an XPPAUT-like syntax although

snnet accepts more liberal use of white space and does not use special tags to denote

parameters and initial conditions. As an example, the differential equation x� = x−1

is written in the snnet specification as x’ = x - 1. Likewise, f(x, y) = x+
y

2
becomes

f(x, y) = x + y / 2.

Heterogeneities

In other simulators, the control code is responsible for explicitly setting any hetero-

geneous parameters, but this is more logically a property of the cell type, not of the

simulation. To solve this problem, I introduce a notation for select probability distri-

butions: “[a : b]” is a uniform random variable between a and b, “a [b]” is a normal

random variable with mean a and standard deviation b, and “a [b%]” is a normal

random variable with mean a and standard deviation b percent of the mean.

Probability distributions are treated as numbers during parsing and may be used

in any formula that takes numbers. Specific values are chosen from the parameter

distribution for each cell in a simulation at the moment of instantiation.

Algebraic Expressions

With the exception of special cases, snnet classifies every line of a model description as

either a differential equation or an algebraic expression. There are no subtypes of al-

gebraic expressions; constants, functions, and other expressions are treated as macros

to be expanded only when needed. This approach has several advantages: unused

values are never calculated, line order is no longer relevant, and it allows parameters

109



to be replaced by functions at run-time. For example, in most of the working memory

simulations, the strength of the inhibitory to excitatory synapses, gsyn, was a fixed

probability distribution. For those simulations that considered dopamine modulation

of this conductance, I kept the same model description and replaced the conductance

rule as part of my simulation protocol.

8.2.2 Protocol Specification

One of snnet’s great strengths is that it is designed around simulation protocols rather

than simulations. Programmatically, a simulation protocol looks like a description

of a simulation, except it is declared as a Python function. When snnet calls this

function to run a simulation, it passes state information that overrides parameter

declarations in the model description, etc. . . . This communication occurs via thread

local variables so it is invisible to the user but still supports parallelization. At the

end of the protocol, snnet optionally extracts the simulation history by the same

method and saves it to disk. Once the protocol has been declared, it only takes the

user one line to run repeated parameter sweeps in parallel and save the results.

Snnet simulations are written in Python with calls to snnet, so the full power of

Python is available for declaring protocol simulations, although they typically consist

only of configuring the model, changing parameters, integrating, and repeating the

last two.

Cell Groups

To configure the model or change parameters, the fundamental unit in snnet is not a

neuron; it is a collection of neurons. Collections of neurons are created at one time

from the same dynamics. New collections are formed by set operations. Random

networks are formed by rules for connections between groups of neurons. Parameter
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changes typically occur to groups of neurons simultaneously. The details of an indi-

vidual neuron are less important. This concept is not unique to snnet; Brian supports

working with collections of neurons as well.

Each collection is an object in Python. Every time a snnet function is called, it

updates an internal list of names for neuron collections by comparing with Python’s

list. This way the collections can be referred to by name during analysis.

Naming is important because the same collection may refer to a different group

of cells in different experiments. For example, in the working memory experiments,

different patterns may be presented to the same network; the persistent activity of

the cue pattern groups is the relevant behavior, not the activity of a given excitatory

cell. Likewise, snnet supports naming time points, so that the same conceptual time

points are identified not just those points with the same numeric time value.

Simulation Forks

Easy simulation forking is a feature that is, to the best of my knowledge, unique

to snnet. Forking is the process of exploring multiple options from the same simu-

lation state. For example, after a period of persistent activity, a working memory

experiment may involve the presentation of a weak distractor or of a strong distrac-

tor. Forking allows the exploration of both without recomputing the persistent state.

The user simply declares a fork() and end fork() at the beginning and ending of

the simulation fork. At the beginning, snnet copies the simulation state and stores

it on a stack; it pops the value from the stack at the end. The simulation state is

more than just the value of the state variables; it includes connectivity information,

the status of the pseudo-random noise sources, and more.
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8.2.3 Integrator Independence

When snnet parses a model description file, it stores the data in a custom internal

format, based on Reverse Polish Notation [Burks 54]. Snnet integration methods are

Python objects whose class implements a standard interface that can read this format

and communicate with a program that does the actual integration. In this way, new

methods can be added without modifying a single line of existing code.

8.2.4 Data Storage

Long simulations for large networks generate a large quantity of data, and it is not

always practical to save all the data for every simulation, so snnet supports saving

with multiple data types which are each free to store any subset of the data.

A data type is a class inheriting from the empty data type. The constructor

takes one argument, the state of the simulation and stores the relevant data in its

member fields. The empty data type defines a save method that serializes the class via

Python’s pickle function, compresses the result using zlib compression, and outputs

the result to disk. Data is loaded by reversing the process.

The class structure provides a standard interface for reading the data. Thus,

analysis routines work without regard to the underlying data type; all that is necessary

is that the data type supports the underlying functions.

8.2.5 Data Analysis

To simplify the writing of data analysis tools, snnet provides run f on dir , a function

whose task is to load all the data files from a directory one-by-one and perform a

function on them; it returns a list of the function return values. Furthermore, it

optionally runs these function calls concurrently, using either separate processes or
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threads, depending on the machine architecture. The analysis tools developed for

this project are included in the standard snnet distribution.
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Appendix A

MODEL EQUATIONS

The previous chapters contained only subsets of the model equations. The full equa-

tions for each of the nonspatial models are listed below.

For notational convenience, we define

Γ(v; θ, σ) =
1

1 + exp (− (v − θ) /σ)
,

a sigmoidal function. This function will be used to control gating variable switching.

A.1 Hodgkin-Huxley Cells

The full set of equations used for the Hodgkin-Huxley model [Hodgkin 52] follows.

Parameters are as in Table A.1.

A.1.1 State Variables

Membrane potential, sodium activation, sodium inactivation, and potassium activa-

tion are denoted by v, m, h, and n, respectively.

Cm
dv

dt
= −INa − IK − I� + Iapp (A.1.1)

dm

dt
=

m∞ −m

τm
= αm (1−m)− βm m (A.1.2)

dh

dt
=

h∞ − h

τh
= αh (1− h)− βh h (A.1.3)
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gNa = 120 gK = 36 g� = .3 Cm = 1

vNa = 50 vK = −77 v� = −54.4

Table A.1: Parameters for the Hodgkin-Huxley model. Reversal potentials are shifted
from the original values.

dn

dt
=

n∞ − n

τn
= αn (1− n)− βn n (A.1.4)

A.1.2 Currents

Sodium, potassium, and leak currents are denoted by INa, IK, and I�, respectively.

INa = gNa m
3 h (v − vNa) (A.1.5)

IK = gK n4 (v − vK) (A.1.6)

I� = g� (v − v�) (A.1.7)

A.1.3 Miscellaneous Equations

αm =
0.1 (v + 25)

1− exp(−(v + 40)/10)
(A.1.8)

βm = 4 exp(−(v + 65)/18) (A.1.9)

αh = .07 exp(−(v + 65)/20) (A.1.10)

βh = Γ(v;−35, 10) (A.1.11)

αn =
.01 (v + 55)

1− exp(−(v + 55)/10)
(A.1.12)

βn = .125 exp(−(v + 65)/80) (A.1.13)
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gNa = 60 gK = 5 g� = .18 Cm = 1 Iapp = −2.8

vNa = 50 vK = −77 v� = −54.4 θm = −37 σm = 10

θn = −50 σn = .1 τn,0 = 1.5 τn,1 = 1.35 θτ,n = −40

στ,n = −12

Table A.2: Parameters for the simplified model, unless otherwise indicated.

A.2 Simplified Model

The full set of equations used for the simplified model, introduced in Section 2.2.4

follows. Parameters are as in Table A.2. This is a modification of the Hodgkin-Huxley

model where the equations for m and h have been replaced with algebraic functions

as in [Rinzel 85] and the limiting proportions and time functions for the remaining

gating variable are defined in terms of Γ, as in [Borg-Graham 91, Borg-Graham 87].

A.2.1 State Variables

The membrane potential and potassium activation are represented by v and n, re-

spectively.

Cm
dv

dt
= −(INa + IK + I�) + Iapp (A.2.1)

dn

dt
=

n∞ − n

τn
(A.2.2)

(A.2.3)

A.2.2 Currents

Sodium, potassium, and leak currents are denoted by INa, IK, and I�, respectively.

INa = gNa m
3

∞ (1− n)(v − vNa) (A.2.4)
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IK = gK n4 (v − vK) (A.2.5)

I� = g� (v − v�) (A.2.6)

A.2.3 Miscellaneous Equations

m∞ = Γ(m; θm, σm) (A.2.7)

n∞ = Γ(n; θn, σn) (A.2.8)

τn = τn,0 + τn,1 Γ(v; θτ,n, στ,n) (A.2.9)

(A.2.10)

A.3 Excitatory Cells

The full set of equations used for the excitatory cells, introduced in Section 3.2 follows.

Parameters are as in Table A.3.

A.3.1 State Variables

The membrane potential, potassium activation, cytosolic calcium concentration, sag

(or h) current activation probability, and synaptic output are denoted by v, n, c, mh,

and s, respectively.

Cm
dv

dt
= −(INa + IK + ICa + Ih + I� + Isyn + Inoise) + Iapp (A.3.1)

dn

dt
=

n∞ − n

τn
(A.3.2)

dc

dt
= ε (−ICa − kCa c) + cinternal + cNMDA (A.3.3)

dmh

dt
=

mh,∞ −mh

τh
(A.3.4)

ds

dt
= α (1− s) s∞ − β s (A.3.5)
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gNa = 60 gK = 5 g� = .18 Cm = 1 Iapp = −2.8

vNa = 55 vK = −80 v� = −60 θm = −37 σm = 10

θn = −50 σn = .1 τn,0 = 1.5 τn,1 = 1.35 θτ,n = −40

στ,n = −12 gCa = .25 vCa = 120 ε = .001 kCa = 2

θy = −35 σy = 2 kh = .2 vh = 0 gh = 16.42

τh,0 = 5 τh,1 = 20 σh = −.1 θh,min = −120 θh,max = −84.5

θs = −10 σs = 2 α = 15 β = .5 gsyn = .2

gnoise = .005 vnoise = 0 vsyn = −110

Table A.3: Standard parameters for the excitatory cell model.

A.3.2 Currents

Sodium, potassium, calcium, sag, and leak currents are denoted by INa, IK, ICa, Ih,

and I�, respectively.

INa = gNa m
3

∞ (1− n)(v − vNa) (A.3.6)

IK = gK n4 (v − vK) (A.3.7)

ICa = gCa y
2

∞ (v − vCa) (A.3.8)

Ih = gh mh (v − vh) (A.3.9)

I� = g� (v − v�) (A.3.10)

A.3.3 Miscellaneous Equations

m∞ = Γ(m; θm, σm) (A.3.11)

n∞ = Γ(n; θn, σn) (A.3.12)

τn = τn,0 + τn,1 Γ(v; θτ,n, στ,n) (A.3.13)
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mh,∞ = Γ(v; θh, σh) (A.3.14)

τh = τh,0 +
τh,1

exp((v + 54.5)/14.2) + exp(−(v + 72)/10)
(A.3.15)

θh = θh,min + (θh,max − θh,min)
c2

k2

h
+ c2

(A.3.16)

y∞ = Γ(v, θy, σy) (A.3.17)

s∞ = Γ(v; θs, σs) (A.3.18)

A.4 Inhibitory Cells

The full equations for the inhibitory cells, as introduced in Section 3.3 follows. Pa-

rameters are as in Table A.4.

A.4.1 State Variables

The membrane potential, sodium activation, A current activation, A current inacti-

vation, calcium concentration, and synaptic output variables are denoted v, n, a, b,

c, and s, respectively.

Cm
dv

dt
= −(INa + IK + ICa + IAHP + IA + I� + Isyn) + Iapp (A.4.1)

dn

dt
=

n∞ − n

τn
(A.4.2)

da

dt
=

a∞ − a

τa
(A.4.3)

db

dt
=

b∞ − b

τb
(A.4.4)

dc

dt
= ε (−ICa − kCa c) (A.4.5)

ds

dt
= α (1− s) s∞ − β s (A.4.6)
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A.4.2 Currents

Sodium, potassium, calcium, A, AHP, and leak currents are denoted INa, IK, ICa, IA,

IAHP, and I�, respectively.

INa = gNa m
3

∞ (1− n)(v − vNa) (A.4.7)

IK = gK n4 (v − vK) (A.4.8)

ICa = gCa y
2

∞ (v − vCa) (A.4.9)

IA = gA a3 b (v − vK) (A.4.10)

IAHP = gAHP

�
c2

c2 + k2

1

�2

(v − vK) (A.4.11)

I� = g� (v − v�) (A.4.12)

A.4.3 Miscellaneous Equations

m∞ = Γ(m; θm, σm) (A.4.13)

n∞ = Γ(n; θn, σn) (A.4.14)

τn = τn,0 + τn,1 Γ(v; θτ,n, στ,n) (A.4.15)

y∞ = Γ(v, θy, σy) (A.4.16)

a∞ = Γ(v; θa, σa) (A.4.17)

b∞ = Γ(v; θb, σb) (A.4.18)

s∞ = Γ(v; θs, σs) (A.4.19)

A.5 Calcium Waves

The full equations for the calcium wave model are from [Wagner 04], a spatial variant

of [Li 94]. Parameters are as in Table A.5.
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gNa = 60 gK = 5 g� = .18 Cm = 1

σm = 10 vNa = 55 vK = −80 v� = −60

θm = −37 vsyn,g = 60 θn = −50 σn = .1

τn,0 = 1.5 τn,1 = 1.35 θτ,n = −40 στ,n = −12

gCa = .25 vCa = 120 kCa = 1.23 σs = 2

θy = −35 σy = 2 gA = .198 θa = −50

σa = 20 θb = −70 σb = −6 τa = 2

τb = 150 gAHP = .9 k1 = .208 θs = 10

vsyn,gg = −100 α = 68 β = .2 ε = .001

gsyn,g = .10± .01 Iapp = −2.8± .28 gsyn,gg = .750± .075

Table A.4: Standard parameters for the inhibitory cell model. a± b means the value
is chosen on a per-cell basis from a normal distribution with mean a and
standard deviation b.

vip3r = 20 kip3 = .15 kact = .4 vleak = .01 vserca = .65

kserca = .1 kinh = 1.9 τ = 20 dc = 1 de = 1

di = 16 fc = .83 fe = .17

Table A.5: Parameters for the calcium model, unless otherwise indicated.
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A.5.1 State Variables

Cytosolic calcium concentration, ER calcium concentration, InsP3 concentration, and

InsP3 receptor gating are denoted by Cc, Ce, I, and h, respectively.

∂Cc

∂t
= dc ∆Cc +

JIP3 − JSERCA + Jleak
fc

+ cionic (A.5.1)

∂Ce

∂t
= de ∆Ce −

JIP3 − JSERCA + Jleak
fe

(A.5.2)

∂I

∂t
= di ∆I (A.5.3)

∂h

∂t
=

h∞ − h

τ
. (A.5.4)

A.5.2 Fluxes

Flux from the InsP3 receptor, SERCA pump, and leak channels are denoted by JIP3,

JSERCA, and Jleak, respectively.

Jleak = vleak (Ce − Cc) (A.5.5)

JSERCA = − vserca C2

c

k2
serca + C2

c

(A.5.6)

JIP3 = vip3r m
3 n3 h3 (Ce − Cc) (A.5.7)

A.5.3 Miscellaneous Equations

m =
I

I + kip3
(A.5.8)

n =
Cc

Cc + kact
(A.5.9)

h∞ =
kinh

kinh + Cc
(A.5.10)
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τdelay = 3.5 τdecay = 2 gnoise = .01 vnoise = 0

Table A.6: Parameters for noise, except where otherwise noted.

A.6 Noise

Each noise source fires according to a Poisson process. If ti and ti+1 are consecutive

spike times, then the synaptic output of a noise source in between those two times is

governed by

s(t) =






1 if ti ≤ t < ti + τdelay

exp((ti + τdelay − t)/τdecay) if ti + τdelay ≤ t < ti+1

(A.6.1)

where the parameters are as in Table A.6, except where otherwise noted.
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Appendix B

PARAMETER SELECTION

Selecting reasonable parameter values is a hard problem for three main reasons: first,

many of the parameters have not been experimentally measured. Second, and even

more fundamentally, modeling inherently involves simplifications. In particular, this

model neglects neuron geometry (see Section 6.2 and the work by [Loewenstein 03])

and the effects of other ion channels. Measured parameter values in the full system

need not necessarily correspond to the best fitting values for the model. Finally,

the system contains a large number of parameters, most of which combine in a very

nonlinear way. That is, if a change is made to one parameter to alter a particular

behavior, then other behaviors are likely to be altered as well, requiring further

changes in additional parameters.

My strategy: use typical values when known, locate reasonable parameter regime

for model-specific parameters by a manual exploration, then do a Monte-Carlo search.

B.1 Excitatory Cells

As in Section 3.4, I assume that each excitatory cell receives excitatory input with

strength gnoise and reversal potential 0 mV from 50 external sources firing at 5 Hz. I

further assume that each excitatory cell is connected with some probability to some

of a group of 30 inhibitory cells with strength gsyn and reversal potential −110 mV.
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Inhibitory synapses are via GABAA, which has a time constant τdecay of about 5 ms

[Ermentrout 10].

The inhibitory cells are supposed to be in one of two states: baseline or persistent.

In the combined model, the activity of inhibitory cells is driven directly by the activity

of the excitatory cells, but for now I consider specific fixed firing rates. During the

baseline state, inhibitory cells fire according to a Poisson process at 5 Hz. During the

persistent state, they fire at 15 Hz. With each spike, they maintain the maximum

neurotransmitter output for 3.5 ms before decaying exponentially with a time constant

of 5 ms. These times were chosen to be approximately consistent with the dynamics

of the inhibitory cell model.

One hundred thousand parameter sets were chosen uniformly at random with

gnoise ∈ [.005, .03], gsyn ∈ [.3, 1], P (IN → E) ∈ [.2, .6], kCa ∈ [0, 10], Icue ∈ [2, 4],

kh ∈ [0, .2], gh ∈ [10, 40], and θh,max ∈ [−85,−78]. Here P (IN → E) denotes the

probability a given inhibitory cell is connected to a given excitatory cell.

Each parameter set was tested as follows:

• A single cell was integrated under baseline conditions for 250, 750, and 2000

ms. At each of the first two time points, the parameters would be rejected and

no further tests run if the firing rate exceeded 10 Hz. At the final time point,

it would be rejected if the rate was bigger than 5 Hz or less than 1 Hz.

• A new simulation with a single cell was run for 300 ms at baseline conditions

with an additional applied current of Icue. This simulates presentation of a

pattern to be retained by working memory. The additional applied current was

removed and the simulation integrated for an additional 2000 ms under the

persistent case for inhibitory input. If the firing rate after the removal of Icue

was more than 30 Hz or less than 10 Hz, the parameter set was rejected.
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• A new simulation with 100 excitatory cells, each connected to 50 external cells

out of a pool of 300 and some subset of a pool of 30 inhibitory cells, run under

baseline conditions for 500 and 2000 ms. At each time point, the parameter set

would be rejected if any neuron was firing at more than 10 Hz. At the final

time point, the parameter set would be rejected if the average firing rate was

less than 1 Hz or more than 5 Hz.

The first and third tests check baseline behavior; the second test checks the abil-

ity of a cell to maintain persistent behavior. Simulating single cells and checking

performance at multiple time points provides a quick way to discard unsatisfactory

parameter sets.

Out of 100, 000 parameter sets, only 14 passed all three tests. A low success rate

is to be expected when exploring an 8 dimensional parameter space.

For each of the 14 candidate parameter sets, I considered the results of the large

baseline test (test 3), a persistence test (like the second test above but with 100 exci-

tatory cells), and a distractor test (same as the persistence test, except the inhibitory

cells were firing at the persistent rate when Icue was applied). Example results are

shown in Figure B.1.

B.2 Inhibitory Cells

As with the excitatory cells, parameters relating to response rate for inhibitory cells

were tuned via a Monte Carlo search after an initial manual exploration. This search

is different, however, because in the basic model, excitatory cells do not interact. By

contrast, in all the models, I assume that inhibitory cells do interact. In Section

5.6, I show that inhibitory-inhibitory interactions play a crucial role in maintaining

irregular activity.
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Figure B.1: Example excitatory cell parameter search results, showing baseline, per-
sistence, and distractor. Each mark represents an action potential. Here
kh = 0.1616, kCa = 3.8487, gsyn = 0.4161, gnoise = 0.01305, Icue = 2.481,
θh,max = −81.99, P (IN → E) = 0.3613, and gh = 23.83.
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Thus instead of considering an individual inhibitory neuron, I work with a pool

of 30 inhibitory neurons. Any two of these neurons are connected with probability

P (IN → IN) with conductance gsyn,gg and reversal potential −100 mV. The inhibitory

neurons receive excitatory input from a pool of excitatory neurons, with connection

probability P (E → IN), conductance gsyn,g and reversal potential 60 mV.

Once again, I suppose that the network is in one of two states: baseline and

persistent. During the baseline state, I suppose that the excitatory pool consists of

60 neurons firing according to a Poisson process at 3 Hz. During the persistent state,

the excitatory pool consists of 30 neurons firing at 25 Hz.

One hundred thousand parameter sets were chosen uniformly at random from

gsyn,g ∈ [0, 0.1], P (E → IN) ∈ [.2, .6], P (IN → IN) ∈ [.2, .6], gsyn,gg ∈ [0, 1],

gAHP ∈ [0, 2], and k1 ∈ [0, 1]. To partially account for the effects of random net-

works, parameter sets were required to pass each of the following two performance

tests for three different networks. A single failure would cause the parameter set to

be discarded.

• Baseline conditions were simulated for 1000 ms. A parameter set was considered

successful if and only if the mean firing rate for inhibitory cells was between 4

and 6 Hz, inclusive, and no single cell fired at more than 15 Hz.

• Persistent conditions were simulated for 1000 ms. To be successful, the mean

firing rate must lie between 13 and 17 Hz, inclusive, every cell must fire at least

once, and no single cell may fire at more than 25 Hz.

Representative results for baseline and persistent conditions are shown in Figure

B.2.
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Figure B.2: Example inhibitory cell parameter search results, showing baseline and
persistence. Here gAHP = 0.6278, P (E → IN) = 0.5903, gsyn,g = 0.02790,
P (IN → IN) = 0.5436, k1 = 0.2784, and gsyn,gg = 0.06425.

146



Appendix C

ON INTERPRETING NEURON MORPHOLOGY

Neurolucida, NEURON, and many other simulators treat neuron morphology as con-

sisting of a collection of frustums. The difficulty with taking the frustum definition

literally is that the frustums will intersect and/or leave gaps at branch points, see

Figure C.1. Electrophysiology models treat dendrites as essentially one-dimensional,

so they are not affected by these limitations. As observed in Section 6.2, wave propa-

gation depends on the exact nature of the branch geometry, so these approximations

are insufficient.

One strategy for defining a continuous membrane from a series of frustums is to

cap the frustums with spheres lying tangent to their ends. A cross-section is shown

Figure C.1: Frustum description of dendrite geometry creates gaps and overlaps.
Four different views of the same branch are shown.
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Figure C.2: Cross-section of a capped frustum, showing axis and original frustum
edges.

in Figure C.2, while an example is shown in Figure C.3. This rule was used to render

Figure 2.1.

The two-dimensional version may be calculated by locating the intersection of the

perpendiculars to each edge, then drawing a circle with that center and radius the

distance to the edges. The three-dimensional version is the solid of revolution of the

two-dimensional version.
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Figure C.3: Portion of a neuron rendered using capped frustums.
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Appendix D

DERIVATION OF THE REACTION-DIFFUSION

EQUATION

Consider a substance or substances on some domain D, distributed with concentra-

tion u(t, x) at time t and position x, where x is a vector in the domain. Suppose

further that local reactions cause this concentration to increase at a rate f(u, t, x),

and that the substance diffuses at a constant rate D. Then assuming these are the

only factors influencing the chemical distribution and assuming one additional hy-

pothesis explained below, the concentration u is governed by the partial differential

equation

∂u

∂t
= D∆u+ f(u, t, x). (D.0.1)

This is a standard result, derived in any text on reaction-diffusion equations. The

derivation that follows is based on [Britton 86].

The derivation requires the divergence theorem, which states that under certain

assumptions the integral of the flux across the boundary ∂R of a region R is equal to

the divergence of the flux over the entire region. That is,

�

∂R

F · dS =

�

R

∇ · F dV. (D.0.2)

The derivation also requires Fick’s First Law, which is an empirical physics ob-

servation that for many substances, diffusive flux moves them from regions of high

150



concentration to regions of low conservation with the flux having magnitude propor-

tional to the gradient. That is

Jdiff = −D∇u. (D.0.3)

Exceptions to Fick’s First Law are rare, and include diffusion across polymer films

[Edwards 96].

Let V ⊂ D be an arbitrary region of the domain with boundary ∂V. The total

amount of chemical m in this region at time t is the integral of the concentration;

that is, m(t) =

�

V

u(t, x) dV. The mass m changes over time due to the production

(or loss) f(u, t, x) within the volume and the diffusive flux J(u, t, x) through the

boundary ∂V. Thus,

d

dt

��

V

u(t, x) dV

�
=

�

V

f(u, t, x) dV −
�

∂V

J(u, t, x) · dS, (D.0.4)

where the sign convention is such that flux out of the region is denoted as positive.

Using the divergence theorem, equation (D.0.2), and assuming that all of the

functions involved are sufficiently smooth, (D.0.4) becomes

�

V

[ut(t, x)− f(u, t, x) +∇ · J(u, t, x)] dV = 0. (D.0.5)

Since V was arbitrary, it follows that

ut(t, x)− f(u, t, x) +∇ · J(u, t, x) = 0, (D.0.6)

as 0 is the only function whose integral over every domain is 0. By Fick’s First Law,

it follows that

ut(t, x) = ∇ · (D∇u) + f(u, t, x). (D.0.7)

If D is constant, then the above becomes ut(t, x) = D∇2u + f(u, t, x), which is the

same as equation (D.0.1) since ∇2 = ∆, the Laplacian.
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