
Dynamics 101

We consider autonomous (that is, not t-dependent) one and two dimensional differential
equations. i.e. Equations of the forms

ẋ = f(x), or (1)

ẋ = f(x, y)

ẏ = g(x, y), (2)

where the dot denotes differentiation with respect to t. Let us assume that f and g are
continuous.

The 1-D case

Note that in (1), if at one moment in time x = x where f(x) = 0, then ẋ = 0, that is,
x is not changing with respect to time. Hence an instant later, we still have x = x. Such an
x is called a fixed point of the equation, because solutions get “stuck” there. (For linear
autonomous systems, once a fixed point is reached, the system will remain there for all time
t. The same does not necessarily hold for nonlinear systems; consider ẋ = x1/3, which has
an infinite number of solutions through the point (t, x) = (0, 0).)

A fixed point x is said to be asymptotically stable if solutions that start near x = x
approach it as time increases, and unstable if they move away from it.

Theorem: Suppose x is a fixed point of (1). If f ′(x) < 0 then x is an asymptotically stable
fixed point. If f ′(x) > 0 then x is unstable.

Note that one-dimensional autonomous systems cannot oscillate because that would require
x to change from increasing (ẋ > 0) to decreasing (ẋ < 0). At some point in between, we
would have ẋ = 0 and hence be stuck at a fixed point. Thus the only types of solutions for
(1) are constant solutions (stuck at a fixed point), solutions that move monotonically toward
(and may or may not reach) a fixed point, and solutions that tend toward ±∞.

The 2-D case

In (2), the set of points (x, y) where ẋ = 0 (i.e. where f(x, y) = 0) is called the x-nullcline .
Similarly, the set of points (x, y) where ẏ = 0 (i.e. where g(x, y) = 0) is called the y-
nullcline . Note that solutions can only cross the x-nullcline vertically, and the y-nullcline
horizontally.
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The point (x, y) is a fixed point of (2) if ẋ|(x,y) = ẏ|(x,y) = 0, i.e. if f(x, y) = g(x, y) = 0.
Note that fixed points correspond to the intersections of the nullclines.

Theorem: Suppose (x, y) is a fixed point of (2). Let A denote the Jacobian of (2) evaluated
at the fixed point, i.e.

A =

(
fx fy

gx gy

)∣∣∣∣
(x,y)=(x,y)

,

where fx denotes the partial derivative of f with respect to x. Let λ1 and λ2 be the eigenvalues
of A, i.e. the roots of det(λI2 − A) = 0. If Re(λ1) < 0 and Re(λ2) < 0, then (x, y) is
asymptotically stable. If Re(λ1) > 0 and Re(λ2) > 0, then (x, y) is unstable. If one of the
eigenvalues has positive real part and the other has negative real part, then the fixed point
is a saddle point , that is, trajectories approach it in some directions and are repelled from
it in other directions.

In two dimensions, we can have all the types of solutions that were possible in the one-
dimensional case, and we can also have periodic solutions. (Adding a third variable will
allow for chaos.)

Warning: All of the above generalizes easily for higher dimensional systems; the following
theorems do not.

Poincaré-Bendixson Theorem:
Let P be a closed, bounded subset of R2, not containing any fixed points of (2). Suppose
further that there exists a trajectory confined in P . Then any trajectory confined in P is
either a periodic orbit or approaches a periodic orbit. In particular, there exists a periodic
orbit.

Dulac’s Criterion:
Let D be a simply connected subset of R2. Let B(x, y) be a function defined on D. If
(Bf)x +(Bg)y is either always strictly positive or always strictly negative, then there are no
periodic orbits lying in D.
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