Dynamics 101

We consider autonomous (that is, not ¢-dependent) one and two dimensional differential
equations. i.e. Equations of the forms

&= f(x), or (1)
&= f(r,y
v =g(x,y), (2)

where the dot denotes differentiation with respect to ¢t. Let us assume that f and g are
continuous.

The 1-D case

Note that in (1), if at one moment in time z = T where f(Z) = 0, then & = 0, that is,
x is not changing with respect to time. Hence an instant later, we still have 2 = Z. Such an
T is called a fixed point of the equation, because solutions get “stuck” there. (For linear
autonomous systems, once a fixed point is reached, the system will remain there for all time
t. The same does not necessarily hold for nonlinear systems; consider & = z'/3, which has
an infinite number of solutions through the point (¢,z) = (0,0).)

A fixed point T is said to be asymptotically stable if solutions that start near x = =
approach it as time increases, and unstable if they move away from it.

Theorem: Suppose T is a fixed point of (1). If f/(Z) < 0 then T is an asymptotically stable
fixed point. If f/(Z) > 0 then T is unstable.

Note that one-dimensional autonomous systems cannot oscillate because that would require
x to change from increasing (¢ > 0) to decreasing (& < 0). At some point in between, we
would have = 0 and hence be stuck at a fixed point. Thus the only types of solutions for
(1) are constant solutions (stuck at a fixed point), solutions that move monotonically toward
(and may or may not reach) a fixed point, and solutions that tend toward +oc.

The 2-D case

In (2), the set of points (z,y) where & = 0 (i.e. where f(z,y) = 0) is called the x-nullcline.
Similarly, the set of points (z,y) where y = 0 (i.e. where g(x,y) = 0) is called the y-
nullcline. Note that solutions can only cross the xz-nullcline vertically, and the y-nullcline
horizontally.



The point (7,7) is a fixed point of (2) if @|zg7) = ¥|@y = 0, i.e. if f(Z,7) = g(Z,7) = 0.
Note that fixed points correspond to the intersections of the nullclines.

Theorem: Suppose (Z,7) is a fixed point of (2). Let A denote the Jacobian of (2) evaluated

at the fixed point, i.e.
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where f, denotes the partial derivative of f with respect to x. Let Ay and A3 be the eigenvalues
of A, i.e. the roots of det(Aly — A) = 0. If Re(A;) < 0 and Re(X2) < 0, then (7,7) is
asymptotically stable. If Re(A\;) > 0 and Re(A\y) > 0, then (Z,7) is unstable. If one of the
eigenvalues has positive real part and the other has negative real part, then the fixed point
is a saddle point, that is, trajectories approach it in some directions and are repelled from
it in other directions.

(z,y)=(Z,9)

In two dimensions, we can have all the types of solutions that were possible in the one-
dimensional case, and we can also have periodic solutions. (Adding a third variable will
allow for chaos.)

Warning: All of the above generalizes easily for higher dimensional systems; the following
theorems do not.

Poincaré-Bendixson Theorem:

Let P be a closed, bounded subset of R?, not containing any fixed points of (2). Suppose
further that there exists a trajectory confined in P. Then any trajectory confined in P is
either a periodic orbit or approaches a periodic orbit. In particular, there exists a periodic
orbit.

Dulac’s Criterion:

Let D be a simply connected subset of R?. Let B(x,y) be a function defined on D. If
(Bf).+ (Bg), is either always strictly positive or always strictly negative, then there are no
periodic orbits lying in D.



