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Series
Summing it all up



Geometric Series

✤ Archimedes found that if -1 < x < 1, then

✤ In Zeno’s paradox, x = 1/2.  There are infinitely many “half distances” 
to travel, but the total distance and total time are still finite.
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The x = 0 case is 
undefined in some sense, 
but the limits work out if 
we pretend

0^0 = 1

The x = 0 case is 
undefined in some sense, 
but the limits work out if 
we pretend

0^0 = 1



Power Series

✤ Read the other way, we have for -1 < x < 1,

✤ That is, we found a series representation for                         .
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xn = 1 + x + x2 + x3 + · · ·

f(x) =
1

1� x



Power Series

✤ A power series about x0 is a series of the form

✤ Note that a power series is a function of x, and so convergence may 
depend on the value of x.  The x values where the series converges 
form an interval called the interval of convergence.  The radius of 
convergence is half the length of the interval of convergence.

We can integrate and 
differentiate power series 
term by term without 
changing the radius of 
convergence.

(Derivative of a sum is the 
sum of the derivatives; 
similarly for integrals).

We can integrate and 
differentiate power series 
term by term without 
changing the radius of 
convergence.

(Derivative of a sum is the 
sum of the derivatives; 
similarly for integrals).
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Example

✤ Find the radius of convergence of the power series:

✤ We use the ratio test:
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✤ Thus the series converges if  -1 < x < 1 and diverges if |x| > 1, so the 
radius of convergence is 1.  (It converges if x=1 and diverges if x=-1.)

This is the power series 
for the function

ln ( 1 + x )

This is the power series 
for the function

ln ( 1 + x )



Linear 
Approximation

✤ The tangent line locally 
approximates the function.

✤ To find          , we let
and take                 .

✤ Thus

If we knew more 
derivative information, 
we could use it to 
approximate the function 
with a quadratic, cubic, 
etc... to get better 
estimates... 

this is part of the idea 
behind Taylor Series.

If we knew more 
derivative information, 
we could use it to 
approximate the function 
with a quadratic, cubic, 
etc... to get better 
estimates... 

this is part of the idea 
behind Taylor Series.
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http://commons.wikimedia.org/wiki/File:Tangent_to_a_curve.svg



Taylor Series

✤ If f(x) has a power series expansion about x0, then it is represented by 
its Taylor Series

✤ The Taylor Series with x0 = 0 is also known as the Maclaurin Series.
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There are theorems 
about when functions 
have convergent power 
series expansions, but we 
won’t worry about this 
for now.

There are theorems 
about when functions 
have convergent power 
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won’t worry about this 
for now.



Example

✤ Estimate sin(1) with an error less than .001.

✤ By the definition of Maclaurin series and some simplification,

sin(x) =
⇥�

n=1

(�1)n�1 x2n�1

(2n� 1)!

✤ Thus,

sin(1) =
⇥�

n=1

(�1)n�1

(2n� 1)!

The simplification that is 
involved is that same as in 
homework 2 when you 
had to convert the 
problem with a bunch of 
zeros into an alternating 
series.
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Example

✤ Estimate sin(1) with an error less than .001.

sin(1) =
⇥�

n=1

(�1)n�1

(2n� 1)!

✤ By the alternating series estimation theorem, if we stop adding at N, 
we will have an error less than 

1
(2(N + 1)� 1)!

=
1

(2N + 1)!



Example

✤ Estimate sin(1) with an error less than .001.

sin(1) =
⇥�

n=1

(�1)n�1

(2n� 1)!

✤ Since (2N+1)! > 1000 if N ≥ 3, we only need to add the first 3 terms: 

sin(1) ⇥ 1
1!
� 1

3!
+

1
5!

=
101
120

⇥ .84167

✤ For comparison, your calculator will tell you sin(1) ≈ .84147.



Estimating Integrals

✤ Estimate                        within .001.

� 1

0
e�t2 dt

We can’t integrate this 
problem directly, so we 
use Taylor series.

We can’t integrate this 
problem directly, so we 
use Taylor series.

✤ By Maclaurin and some simplification,
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✤ Thus
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Estimating Integrals

✤ Estimate                        within .001.

� 1

0
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✤ By the fundamental theorem of calculus,
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Estimating Integrals

✤ Estimate                        within .001.

� 1

0
e�t2 dt
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0
e�t2 dt =
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(�1)n

n! (2n + 1)

✤ By the alternating series estimation theorem, we will have error less 
than .001 by adding terms 0 through 4.  Thus
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1! · 3
+
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+
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4! · 9
=

5651
7560

⇥ .7475

If you use fnInt on a 
TI-83, or the equivalent 
on your calculator, you 
will find the integral is 
about .746824.

If you use fnInt on a 
TI-83, or the equivalent 
on your calculator, you 
will find the integral is 
about .746824.



Differential Equations

✤ A differential equation is an equation that contains an unknown 
function and one or more of its derivatives.

✤ In 162.01, we learned how to solve certain types of differential 
equations, such as those modeling radioactive decay

by the method of separation of variables.

dy

dt
= �k y



Differential Equations

✤ Unfortunately, most differential equations cannot be solved by 
separation of variables.

✤ One common technique is to solve for the coefficients of a power 
series solution to the differential equation.

✤ This strategy requires us to either recognize the power series as a 
familiar function or be willing to work with its series form.



Example

✤ Show that

is a solution to

y = x +
��

n=0

xn
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y�� � y + x = 0.



Example

✤ If

y = x +
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The n=0 term is a 
constant, so it goes 
away when we 
differentiate.

The n=0 term is a 
constant, so it goes 
away when we 
differentiate.



Example

✤ Since

y = x +
��

n=0
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y�� =
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n!and

✤ we conclude

y�� � y + x =
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⇥
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⇥
+ x = 0.

✤ In this case, we can show y = x + ex.



Fourier Series

✤ Power series express a function 
in terms of 1, x, x2, etc...

✤ Fourier series express functions 
in terms of cos(1x) and sin(1x), 
cos(2x) and sin(2x), etc...

f(x) =
a0

2
+
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n=1

an cos(n x)

+
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n=1

bn sin(n x)

We probably won’t talk about Fourier 
in this course, but these series are 
commonly used when dealing with 
vibrations, such as sound...

One way to compress sound is to find 
the dominant frequencies (those with 
the largest amplitude) and store only 
their coefficients.
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http://commons.wikimedia.org/wiki/File:Fourier_Series.svg


