Review
for 263.02 final

14.1 Functions of several variables.

e Find domain and range. Evaluate.
e Sketch a graph. Draw and interpret level curves. (Functions of three variables have level surfaces.)

e Match surfaces with level curves.
14.2 Limits and continuity.

e The limit is undefined if two paths to a point suggest different values.

e Compute limits (various techniques: multiply and divide by conjugate, squeeze theorem, convert
to polar, etc...).

e A function f is continuous at a point if the limit and the function value both exist and are equal.
Find points of continuity.

14.3 Partial derivatives.

e Find partial derivatives by differentiating with respect to one variable while treating the others
as constants.

Estimate derivatives from graph or contours.

Mixed partials. Clairaut’s theorem: If f,, and f,, are both continuous in D, then f,, = fy, in
D.

e Implicit differentiation.
e Check solutions for partial differential equations by substitution.
14.4 Tangent planes and linear approximations.

e Find tangent plane at a point.

e The total differential: dz = % dz + %
ox oy

e Use the total differential to estimate errors, approximate functions.

dy, and similarly in higher dimensions.

14.5 The chain rule.

Q= _0zde 0y

dt — dx dt = oy dt’

e For z = f(x,y), x = g(s,t), y = h(s,t), we have % = S—i g—f + Z—; % We find 0z/0s similarly.

e Use chain rule for higher order derivatives as well.

e For z = f(x,y), x = g(t), y = h(t), we have

14.6 Directional derivatives and the gradient vector.

o The gradient of f: Vf(z,y) = (fs, fy)- A similar statement applies in 34+ dimensions. Gradient
vector points in path of fastest increase, so moving in the direction of the gradient gives the path
of steepest ascent.

e Directional derivative: D, = Vf - u, where u is a unit vector.

e Find tangent planes to level surfaces F(x,y,z) = k. Gradient of F' is in normal direction to the
surface.



14.7 Maximum and minimum values.

e fu, [y are 0 at a local max or min (provided they exist). Critical points are the places where all
first order derivatives are 0.

e Second derivatives test. Consider D = fiz fyy — 3y. If D > 0, fze > 0 at a critical point, then
local min. If D > 0, f,, < 0 at a critical point, then local max. If D < 0, neither a local max nor
min.

e To find absolute max or min, check critical points and the boundary.
14.8 Lagrange multipliers.

e Know method. Used for maximizing and minimizing subject to one or more constraints, e.g.
9(z,y,2) = k.

15.1 Double integrals over rectangles.

e Double Riemann sum definition.

e Approximate via midpoint method.

1
o Average value: faverage = W(R) ij(x, y) dA.
R

e Basic properties: linearity, order preserving.
15.2 Tterated integrals.
e Fubini’s theorem:

If R = [a,] x [¢,d], then Hf(x,y) dA = Lb ff(x,y) dy do = f Lbf(x,y) dz dy,
). : ,

i.e. dA becomes dzx dy.

e Evaluate inside integral by treating other variables as constants. If f(z,y) = g(x)h(y), can
evaluate as the product of two integrals.

15.3 Double integrals over general regions.

e Extend functions over a general region to be over a rectangle by taking them to be 0 outside of
their domain.

e Break a region into pieces to make easier to integrate. Bounds for inner integrals may depend on
outer variables, but not the other way.

e Exchange the order of integration when necessary.
e Properties of double integrals.

e Integrating 1 gives area.

15.4 Double integrals in polar coordinates.

B b

e For f defined in the polar region 0 < a <r <b, a <0 < 3, ijdA = J J frdrdf, ie. dA

B [0 a

becomes r dr dé.
e Use z =1 cos(f) and y = r sin(f) to convert cartesian problems to polar.
15.5 Applications of double integrals.
e Mass is the integral of density.
e For density p(x, y), moment about the z-axis is M, = ny p(z,y) dA. Similarly, M, = sz p(z,y) dA.
D D



e Center of mass is at (M,/m, M;/m). (Yes, M, goes with the z-coordinate, and M, with the y.)

e For moment of inertia (second moment), I, = J’f y? p(x,y) dA. Similarly for I,. Moment of inertia

D
about the origin is Iy = I, + I,.

e Probability within a region is the integral of the joint density function.

e Compute expected values given a joint density function.
15.6 Triple integrals.

e Fubini’s theorem extends to higher dimensions. (When integrating over a box, integrate the x,
the y, and the z.)

e Define integral in a general region by working in a box, taking the function to be zero inside the
box but outside the old domain.

e dV becomes dxdydz.
e Integrating 1 gives volume.
e [terated integrals as with two variables.

e Compute probabilities.
15.7 Triple integrals in cylindrical coordinates.

e Especially useful for solids of revolution.
e dV becomes rdzdrdé.

15.8 Triple integrals in spherical coordinates.

e Especially useful for cones and spheres centered at the origin.

e dV becomes p? sin(¢) dpdf de.

e r = psin(¢),sox = p sin(¢) cos(d), y = p sin(¢) sin(f), and z = p cos(¢). Hence 22 +y>+2% = p?.
e Notethat 0 < o <mand 0 <0 < 2.

15.9 Change of variables in multiple integrals.

e The Jacobian of the transformation « = g(u, v) and y = h(u,v) is

)
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with a similar definition holding for transformations of three or more variables. (Note: The
Jacobian is a scalar valued function.)
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ment holds for triple integrals.

oz, y)
o(u,v)

dudv. A similar state-

dudv, ie. dA = ‘

16.1 Vector fields.

e Sketch vector fields: A vector field F is a function that assigns a vector to every point in its
domain. The output is the same dimension as the input.

16.2 Line integrals.

e If C is the parametrically defined curve x = x(t), y = y(t), a < t < b, then

| remas=| " F )50 \/ (‘jlt) . (‘i’)th.
C




e Instead of integrating with respect to arc length s, we can integrate with respect to x :
b
| o = [ s um)a 0 at
a
c

and similarly for integrating with respect to y. (Follows from the chain rule.)
e Integrating 1 with respect to arc length gives the total arc length.
e Line integral of vector field F = Pi+ Qj+ Rk along C is

J’F-drz J’:F(r(t))-r'(t)dtzch-Tds= JCde+Qdy+Rdz

b
e Work to move a particle along the curve C' defined by r(t) is W = J F - dr.

16.3 The fundamental theorem for line integrals.

e A conservative vector field is a field F = V f for some function f.

JVf-dr = f(r(b))— f(r(a)). That is, the line integral of a conservative vector field is independent
c

of path. Conversely, if a line integral of a continuous vector field F is independent of path, then
F is a conservative vector field.

o JF - dr is independent of path if and only if JF -dr = 0 for every closed path L in the domain.

C L
If F = Pi+ Q] is a conservative vector field and P and @ have continuous derivatives, then
P, = Q.. (Statement is true on any domain; converse only holds for open simply-connected sets.)

If force is described by a conservative vector field, then energy is preserved. (Conservation of
energy.)

16.4 Green’s theorem.

e Converts line integrals over the boundary to integrals over the area.

° de:z: +Qdy = JJ (Qe — Py) dA = Jf curl (Pi+ Qj)-kdA, for C positively oriented.
c D D

— If C is negatively oriented, then sign is flipped from the above.
— Positive orientation: Counterclockwise rotation. (Region to left of direction of motion.)
— Negative orientation: Clockwise rotation. (Region to right of direction of motion.)

e Sometimes useful to calculate areas enclosed by parametric curves. Just pick any @ and P such
that @, — P, = 1. Examples include: Q =z and P =0, Q =0 and P = —y, or Q = z/2 and
P =—y)/2.

16.5 Curl and divergence.
e Calculate curl and divergence: curl (F) =V x F. div(F) =V - F.

Positive divergence at P means net flow near P is outward.

(curl (v))(P) points in the direction of the axis of rotation of v at P.

curl (Vf) = 0, provided f has continuous second derivatives. That is, the curl of a conservative
vector field is 0. The converse is true as well: If curl (F) = 0, then F is a conservative vector field.

div (curl (F)) = 0.



e Vector forms of Green’s theorem:

fF-dr:g(curl(F)-k) dA4, ;f(F-n) ds:gdiv(F) dA.

16.6 Parametric surfaces and their areas.

Find parametric representation for surfaces.

Find tangent plane to surface. r, X r, is the normal vector.

Area of surface defined by r(u,v) where (u,v) € D is A = Jf v, x r,|dA.
D

Special case: Area of surface z = f(x,y) where (z,y) € D is A= Jf \/1 + (f2)? + (fy)? dA.
D

16.7 Surface integrals.

e Compute: f f Fz,y,2)dS = ﬂ Fr(u,0)) [ra x To] dA.
S D

— Note: The surface area of S is J’J ds = J |r,, x r,|dA, as above.
5 D

Special case: Integrating over z = f(x,y): Jff(m,% z)dS = fff(x, v, 9(z,v)) \/(fm)2 + (fy)? +1dA.
s D

Convention: Positive orientation is for outward normal vectors.

e Surface integrals of vector field F, i.e. the flux of F across S:

”F-dS:“(F-n)d5=“F-(ruxr,,)dA.
S S D

Special case: If S is the graph of z = f(z,y), and F = (P, Q, R), then

JJF-dSzJJ(—Pfx—ny—#R) dA.

16.8 Stokes’ theorem.
e Use to convert a surface integral to a line integral around the boundary, or vice-versa.

. JF -dr = jj curl (F) - dS, for C the positively oriented boundary of S.
c s

e Corollary: If S; and S5 share the same boundary C with the same orientation, then

iljcurl (F)-dS = é[F -dr = l! curl (F) - dS.

16.9 The divergence theorem.
e Use the divergence theorem to convert surface integrals to volume integrals, or vice-versa.

. JJF -dS = JJJ div (F) dV, for S the region bounding E with outward orientation.
S E



