
Review
for 263.02 final

14.1 Functions of several variables.

• Find domain and range. Evaluate.

• Sketch a graph. Draw and interpret level curves. (Functions of three variables have level surfaces.)

• Match surfaces with level curves.

14.2 Limits and continuity.

• The limit is undefined if two paths to a point suggest different values.

• Compute limits (various techniques: multiply and divide by conjugate, squeeze theorem, convert
to polar, etc. . . ).

• A function f is continuous at a point if the limit and the function value both exist and are equal.
Find points of continuity.

14.3 Partial derivatives.

• Find partial derivatives by differentiating with respect to one variable while treating the others
as constants.

• Estimate derivatives from graph or contours.

• Mixed partials. Clairaut’s theorem: If fxy and fyx are both continuous in D, then fxy � fyx in
D.

• Implicit differentiation.

• Check solutions for partial differential equations by substitution.

14.4 Tangent planes and linear approximations.

• Find tangent plane at a point.

• The total differential: dz �
Bz

Bx
dx�

Bz

By
dy, and similarly in higher dimensions.

• Use the total differential to estimate errors, approximate functions.

14.5 The chain rule.

• For z � fpx, yq, x � gptq, y � hptq, we have
dz

dt
�

Bz

Bx

dx

dt
�

Bz

By

dy

dt
.

• For z � fpx, yq, x � gps, tq, y � hps, tq, we have
Bz

Bt
�

Bz

Bx

Bx

Bt
�

Bz

By

By

Bt
. We find Bz{Bs similarly.

• Use chain rule for higher order derivatives as well.

14.6 Directional derivatives and the gradient vector.

• The gradient of f : ∇fpx, yq � xfx, fyy. A similar statement applies in 3� dimensions. Gradient
vector points in path of fastest increase, so moving in the direction of the gradient gives the path
of steepest ascent.

• Directional derivative: Du � ∇f � u, where u is a unit vector.

• Find tangent planes to level surfaces F px, y, zq � k. Gradient of F is in normal direction to the
surface.



14.7 Maximum and minimum values.

• fx, fy are 0 at a local max or min (provided they exist). Critical points are the places where all
first order derivatives are 0.

• Second derivatives test. Consider D � fxx fyy � f2xy. If D ¡ 0, fxx ¡ 0 at a critical point, then
local min. If D ¡ 0, fxx   0 at a critical point, then local max. If D   0, neither a local max nor
min.

• To find absolute max or min, check critical points and the boundary.

14.8 Lagrange multipliers.

• Know method. Used for maximizing and minimizing subject to one or more constraints, e.g.
gpx, y, zq � k.

15.1 Double integrals over rectangles.

• Double Riemann sum definition.

• Approximate via midpoint method.

• Average value: faverage �
1

AreapRq

¼
R

fpx, yq dA.

• Basic properties: linearity, order preserving.

15.2 Iterated integrals.

• Fubini’s theorem:

If R � ra, bs � rc, ds, then

¼
R

fpx, yq dA �

» b
a

» d
c

fpx, yq dy dx �

» d
c

» b
a

fpx, yq dxdy,

i.e. dA becomes dxdy.

• Evaluate inside integral by treating other variables as constants. If fpx, yq � gpxqhpyq, can
evaluate as the product of two integrals.

15.3 Double integrals over general regions.

• Extend functions over a general region to be over a rectangle by taking them to be 0 outside of
their domain.

• Break a region into pieces to make easier to integrate. Bounds for inner integrals may depend on
outer variables, but not the other way.

• Exchange the order of integration when necessary.

• Properties of double integrals.

• Integrating 1 gives area.

15.4 Double integrals in polar coordinates.

• For f defined in the polar region 0 ¤ a ¤ r ¤ b, α ¤ θ ¤ β,

¼
R

f dA �

» β
α

» b
a

f r dr dθ, i.e. dA

becomes r dr dθ.

• Use x � r cospθq and y � r sinpθq to convert cartesian problems to polar.

15.5 Applications of double integrals.

• Mass is the integral of density.

• For density ρpx, yq,moment about the x-axis isMx �

¼
D

y ρpx, yq dA. Similarly, My �

¼
D

x ρpx, yq dA.



• Center of mass is at pMy{m,Mx{mq. (Yes, My goes with the x-coordinate, and Mx with the y.)

• For moment of inertia (second moment), Ix �

¼
D

y2 ρpx, yqdA. Similarly for Iy. Moment of inertia

about the origin is I0 � Ix � Iy.

• Probability within a region is the integral of the joint density function.

• Compute expected values given a joint density function.

15.6 Triple integrals.

• Fubini’s theorem extends to higher dimensions. (When integrating over a box, integrate the x,
the y, and the z.)

• Define integral in a general region by working in a box, taking the function to be zero inside the
box but outside the old domain.

• dV becomes dxdy dz.

• Integrating 1 gives volume.

• Iterated integrals as with two variables.

• Compute probabilities.

15.7 Triple integrals in cylindrical coordinates.

• Especially useful for solids of revolution.

• dV becomes r dz dr dθ.

15.8 Triple integrals in spherical coordinates.

• Especially useful for cones and spheres centered at the origin.

• dV becomes ρ2 sinpφq dρdθ dφ.

• r � ρ sinpφq, so x � ρ sinpφq cospθq, y � ρ sinpφq sinpθq, and z � ρ cospφq. Hence x2�y2�z2 � ρ2.

• Note that 0 ¤ φ ¤ π and 0 ¤ θ   2π.

15.9 Change of variables in multiple integrals.

• The Jacobian of the transformation x � gpu, vq and y � hpu, vq is

Bpx, yq

Bpu, vq
�

���� gu gv
hu hv

���� ,
with a similar definition holding for transformations of three or more variables. (Note: The
Jacobian is a scalar valued function.)

•
¼
R

fpx, yq dA �

¼
S

fpxpu, vq, ypu, vqq

����Bpx, yqBpu, vq

���� dudv, i.e. dA �

����Bpx, yqBpu, vq

���� dudv. A similar state-

ment holds for triple integrals.

16.1 Vector fields.

• Sketch vector fields: A vector field F is a function that assigns a vector to every point in its
domain. The output is the same dimension as the input.

16.2 Line integrals.

• If C is the parametrically defined curve x � xptq, y � yptq, a ¤ t ¤ b, then

»
C

fpx, yq ds �

» b
a

fpxptq, yptqq

d�
dx

dt


2

�

�
dy

dt


2

dt.



• Instead of integrating with respect to arc length s, we can integrate with respect to x :

»
C

fpx, yq dx �

» b
a

fpxptq, yptqqx1ptqdt,

and similarly for integrating with respect to y. (Follows from the chain rule.)

• Integrating 1 with respect to arc length gives the total arc length.

• Line integral of vector field F � P i�Q j�Rk along C is

»
C

F � dr �

» b
a

Fprptqq � r1ptq dt �

»
C

F �Tds �

»
C

P dx�Qdy �R dz

• Work to move a particle along the curve C defined by rptq is W �

» b
a

F � dr.

16.3 The fundamental theorem for line integrals.

• A conservative vector field is a field F � ∇f for some function f.

•
»
C

∇f �dr � fprpbqq�fprpaqq. That is, the line integral of a conservative vector field is independent

of path. Conversely, if a line integral of a continuous vector field F is independent of path, then
F is a conservative vector field.

•
»
C

F � dr is independent of path if and only if

»
L

F � dr � 0 for every closed path L in the domain.

• If F � P i � Q j is a conservative vector field and P and Q have continuous derivatives, then
Py � Qx. (Statement is true on any domain; converse only holds for open simply-connected sets.)

• If force is described by a conservative vector field, then energy is preserved. (Conservation of
energy.)

16.4 Green’s theorem.

• Converts line integrals over the boundary to integrals over the area.

•
»
C

P dx�Qdy �

¼
D

pQx � Pyq dA �

¼
D

curl pP i�Q jq � k dA, for C positively oriented.

– If C is negatively oriented, then sign is flipped from the above.

– Positive orientation: Counterclockwise rotation. (Region to left of direction of motion.)

– Negative orientation: Clockwise rotation. (Region to right of direction of motion.)

• Sometimes useful to calculate areas enclosed by parametric curves. Just pick any Q and P such
that Qx � Py � 1. Examples include: Q � x and P � 0, Q � 0 and P � �y, or Q � x{2 and
P � �y{2.

16.5 Curl and divergence.

• Calculate curl and divergence: curl pFq � ∇� F. div pFq � ∇ � F.

• Positive divergence at P means net flow near P is outward.

• pcurl pvqqpP q points in the direction of the axis of rotation of v at P.

• curl p∇fq � 0, provided f has continuous second derivatives. That is, the curl of a conservative
vector field is 0. The converse is true as well: If curl pFq � 0, then F is a conservative vector field.

• div pcurl pFqq � 0.



• Vector forms of Green’s theorem:¾
C

F � dr �

¼
D

pcurl pFq � kq dA,

¾
C

pF � nq ds �

¼
D

div pFq dA.

16.6 Parametric surfaces and their areas.

• Find parametric representation for surfaces.

• Find tangent plane to surface. ru � rv is the normal vector.

• Area of surface defined by rpu, vq where pu, vq P D is A �

¼
D

|ru � rv|dA.

• Special case: Area of surface z � fpx, yq where px, yq P D is A �

¼
D

b
1 � pfxq2 � pfyq2 dA.

16.7 Surface integrals.

• Compute:

¼
S

fpx, y, zq dS �

¼
D

fprpu, vqq |ru � rv| dA.

– Note: The surface area of S is

¼
S

dS �

¼
D

|ru � rv|dA, as above.

• Special case: Integrating over z � fpx, yq:

¼
S

fpx, y, zqdS �

¼
D

fpx, y, gpx, yqq
b
pfxq2 � pfyq2 � 1 dA.

• Convention: Positive orientation is for outward normal vectors.

• Surface integrals of vector field F, i.e. the flux of F across S:¼
S

F � dS �

¼
S

pF � nq dS �

¼
D

F � pru � rvq dA.

• Special case: If S is the graph of z � fpx, yq, and F � xP,Q,Ry, then¼
S

F � dS �

¼
D

p�P fx �Qfy �Rq dA.

16.8 Stokes’ theorem.

• Use to convert a surface integral to a line integral around the boundary, or vice-versa.

•
»
C

F � dr �

¼
S

curl pFq � dS, for C the positively oriented boundary of S.

• Corollary: If S1 and S2 share the same boundary C with the same orientation, then¼
S1

curl pFq � dS �

»
C

F � dr �

¼
S2

curl pFq � dS.

16.9 The divergence theorem.

• Use the divergence theorem to convert surface integrals to volume integrals, or vice-versa.

•
¼
S

F � dS �

½
E

div pF q dV, for S the region bounding E with outward orientation.


